Department of Computer and Information Sciences (DCIS), PIEAS, Islamabad, Pakistan.
Digital Disruption Lab, DCIS, PIEAS, Islamabad, Pakistan.
PLoS One. 2022 Dec 1;17(12):e0278064. doi: 10.1371/journal.pone.0278064. eCollection 2022.
With the advent of Big Data technology and the Internet of Things, Intelligent Transportation Systems (ITS) have become inevitable for future transportation networks. Travel time prediction (TTP) is an essential part of ITS and plays a pivotal role in congestion avoidance and route planning. The novel data sources such as smartphones and in-vehicle navigation applications allow traffic conditions in smart cities to be analyzed and forecast more reliably than ever. Such a massive amount of geospatial data provides a rich source of information for TTP. Gated Recurrent Unit (GRU) has been successfully applied to traffic prediction problems due to its ability to handle long-term traffic sequences. However, the existing GRU does not consider the relationship between various historical travel time positions in the sequences for traffic prediction. We propose an attention-based GRU model for short-term travel time prediction to cope with this problem enabling GRU to learn the relevant context in historical travel time sequences and update the weights of hidden states accordingly. We evaluated the proposed model using FCD data from Beijing. To demonstrate the generalization of our proposed model, we performed a robustness analysis by adding noise obeying Gaussian distribution. The experimental results on test data indicated that our proposed model performed better than the existing deep learning time-series models in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R2).
随着大数据技术和物联网的出现,智能交通系统(ITS)已成为未来交通网络的必然选择。旅行时间预测(TTP)是 ITS 的重要组成部分,在避免拥堵和路线规划方面起着关键作用。智能手机和车载导航应用等新型数据源使得对智慧城市交通状况的分析和预测比以往任何时候都更加可靠。如此大量的地理空间数据为 TTP 提供了丰富的信息来源。门控循环单元(GRU)由于能够处理长期交通序列,已成功应用于交通预测问题。然而,现有的 GRU 并没有考虑到序列中各种历史旅行时间位置之间的关系,因此我们提出了一种基于注意力的 GRU 模型来进行短期旅行时间预测,以解决这个问题,使 GRU 能够学习历史旅行时间序列中的相关上下文,并相应地更新隐藏状态的权重。我们使用来自北京的 FCD 数据评估了所提出的模型。为了证明我们提出的模型的泛化能力,我们通过添加服从高斯分布的噪声进行了鲁棒性分析。在测试数据上的实验结果表明,与现有的深度学习时间序列模型相比,我们提出的模型在均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R2)方面表现更好。