IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):9055-9071. doi: 10.1109/TPAMI.2022.3225816. Epub 2023 Jun 5.
This study develops a unified Point Cloud Geometry (PCG) compression method through the processing of multiscale sparse tensor-based voxelized PCG. We call this compression method SparsePCGC. The proposed SparsePCGC is a low complexity solution because it only performs the convolutions on sparsely-distributed Most-Probable Positively-Occupied Voxels (MP-POV). The multiscale representation also allows us to compress scale-wise MP-POVs by exploiting cross-scale and same-scale correlations extensively and flexibly. The overall compression efficiency highly depends on the accuracy of estimated occupancy probability for each MP-POV. Thus, we first design the Sparse Convolution-based Neural Network (SparseCNN) which stacks sparse convolutions and voxel sampling to best characterize and embed spatial correlations. We then develop the SparseCNN-based Occupancy Probability Approximation (SOPA) model to estimate the occupancy probability either in a single-stage manner only using the cross-scale correlation, or in a multi-stage manner by exploiting stage-wise correlation among same-scale neighbors. Besides, we also suggest the SparseCNN based Local Neighborhood Embedding (SLNE) to aggregate local variations as spatial priors in feature attribute to improve the SOPA. Our unified approach not only shows state-of-the-art performance in both lossless and lossy compression modes across a variety of datasets including the dense object PCGs (8iVFB, Owlii, MUVB) and sparse LiDAR PCGs (KITTI, Ford) when compared with standardized MPEG G-PCC and other prevalent learning-based schemes, but also has low complexity which is attractive to practical applications.
本研究通过处理基于多尺度稀疏张量的体素化点云几何(PCG),开发了一种统一的 PCG 压缩方法。我们将这种压缩方法称为稀疏 PCGC。所提出的稀疏 PCGC 是一种低复杂度的解决方案,因为它仅在稀疏分布的最可能占用正占据体素(MP-POV)上执行卷积。多尺度表示还允许我们通过广泛而灵活地利用跨尺度和同尺度相关性来按比例压缩 MP-POV。整体压缩效率高度依赖于每个 MP-POV 的占用概率估计的准确性。因此,我们首先设计基于稀疏卷积的神经网络(SparseCNN),该网络堆叠稀疏卷积和体素采样,以最佳地描述和嵌入空间相关性。然后,我们开发了基于 SparseCNN 的占用概率逼近(SOPA)模型,以仅使用跨尺度相关性以单阶段方式或通过利用同尺度邻居之间的阶段相关性以多阶段方式来估计占用概率。此外,我们还建议使用基于 SparseCNN 的局部邻域嵌入(SLNE)来聚合局部变化作为特征属性中的空间先验,以改进 SOPA。我们的统一方法不仅在包括密集物体 PCG(8iVFB、Owlii、MUVB)和稀疏激光雷达 PCG(KITTI、Ford)在内的各种数据集上的无损和有损压缩模式下均表现出最先进的性能,而且与标准化的 MPEG G-PCC 和其他流行的基于学习的方案相比,复杂度也较低,这对实际应用很有吸引力。