From the Ibis Reproductive Health, Oakland, CA.
Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA.
Epidemiology. 2023 Jan 1;34(1):140-149. doi: 10.1097/EDE.0000000000001546. Epub 2022 Sep 27.
Studies on the effectiveness of self-managed medication abortion may suffer from misclassification and selection bias due to self-reported outcomes and loss of follow-up. Monte Carlo sensitivity analysis can estimate self-managed abortion effectiveness accounting for these potential biases.
We conducted a Monte Carlo sensitivity analysis based on data from the Studying Accompaniment model Feasibility and Effectiveness Study (the SAFE Study), to generate bias-adjusted estimates of the effectiveness of self-managed abortion with accompaniment group support. Between July 2019 and April 2020, we enrolled a total of 1051 callers who contacted accompaniment groups in Argentina and Nigeria for self-managed abortion information; 961 took abortion medications and completed at least one follow-up. Using these data, we calculated measures of effectiveness adjusted for ineligibility, misclassification, and selection bias across 50,000 simulations with bias parameters drawn from pre-specified Beta distributions in R.
After accounting for the potential influence of various sources of bias, bias-adjusted estimates of effectiveness were similar to observed estimates, conditional on chosen bias parameters: 92.68% (95% simulation interval: 87.80%, 95.74%) for mifepristone in combination with misoprostol (versus 93.7% in the observed data) and 98.47% (95% simulation interval: 96.79%, 99.39%) for misoprostol alone (versus 99.3% in the observed data).
After adjustment for multiple potential sources of bias, estimates of self-managed medication abortion effectiveness remain high. Monte Carlo sensitivity analysis may be useful in studies measuring an epidemiologic proportion (i.e., effectiveness, prevalence, cumulative incidence) while accounting for possible selection or misclassification bias.
由于自我报告的结果和随访丢失,自我管理药物流产的有效性研究可能会受到分类和选择偏倚的影响。蒙特卡罗敏感性分析可以估计自我管理流产有效性,同时考虑这些潜在的偏倚。
我们基于 Studying Accompaniment 模型可行性和有效性研究(SAFE 研究)的数据进行了蒙特卡罗敏感性分析,以生成有陪伴组支持的自我管理流产有效性的偏差调整估计值。2019 年 7 月至 2020 年 4 月,我们共招募了 1051 名致电陪伴小组以获取自我管理流产信息的呼叫者;961 名服用了流产药物并完成了至少一次随访。使用这些数据,我们根据 R 中来自预定义 Beta 分布的偏差参数,在 50000 次模拟中计算了经过不合格、分类和选择偏差调整的有效性衡量标准。
在考虑到各种潜在偏倚的影响后,在选择的偏倚参数条件下,经过调整的有效性估计值与观察到的估计值相似:米非司酮联合米索前列醇的有效性为 92.68%(95%模拟区间:87.80%,95.74%)(观察数据为 93.7%),米索前列醇单独使用的有效性为 98.47%(95%模拟区间:96.79%,99.39%)(观察数据为 99.3%)。
在调整了多种潜在偏倚来源后,自我管理药物流产有效性的估计值仍然很高。蒙特卡罗敏感性分析可能对测量流行病学比例(即有效性、患病率、累积发病率)有用,同时考虑到可能的选择或分类偏倚。