Suppr超能文献

BrightEyes-TTM 作为一个开源的时间标记模块,用于使单光子显微镜民主化。

The BrightEyes-TTM as an open-source time-tagging module for democratising single-photon microscopy.

机构信息

Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 85, Genoa, 16152, Italy.

Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Via Enrico Melen 85, Genoa, 16152, Italy.

出版信息

Nat Commun. 2022 Dec 1;13(1):7406. doi: 10.1038/s41467-022-35064-0.

Abstract

Fluorescence laser-scanning microscopy (LSM) is experiencing a revolution thanks to new single-photon (SP) array detectors, which give access to an entirely new set of single-photon information. Together with the blooming of new SP LSM techniques and the development of tailored SP array detectors, there is a growing need for (i) DAQ systems capable of handling the high-throughput and high-resolution photon information generated by these detectors, and (ii) incorporating these DAQ protocols in existing fluorescence LSMs. We developed an open-source, low-cost, multi-channel time-tagging module (TTM) based on a field-programmable gate array that can tag in parallel multiple single-photon events, with 30 ps precision, and multiple synchronisation events, with 4 ns precision. We use the TTM to demonstrate live-cell super-resolved fluorescence lifetime image scanning microscopy and fluorescence lifetime fluctuation spectroscopy. We expect that our BrightEyes-TTM will support the microscopy community in spreading SP-LSM in many life science laboratories.

摘要

荧光激光扫描显微镜(LSM)正在经历一场革命,这要归功于新型单光子(SP)阵列探测器,它为单光子信息提供了全新的获取途径。随着新型 SP LSM 技术的蓬勃发展和定制化 SP 阵列探测器的发展,人们对(i)能够处理这些探测器产生的高速率和高分辨率光子信息的 DAQ 系统,以及(ii)将这些 DAQ 协议整合到现有的荧光 LSM 中,产生了越来越大的需求。我们开发了一种基于现场可编程门阵列的开源、低成本、多通道时间标记模块(TTM),它可以以 30 ps 的精度并行标记多个单光子事件,并以 4 ns 的精度标记多个同步事件。我们使用 TTM 演示了活细胞超分辨荧光寿命图像扫描显微镜和荧光寿命波动光谱。我们希望我们的 BrightEyes-TTM 将支持显微镜社区在许多生命科学实验室中推广 SP-LSM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aec0/9715684/68915de1edd0/41467_2022_35064_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验