Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
BMC Biol. 2022 Dec 2;20(1):265. doi: 10.1186/s12915-022-01469-y.
The symbiotic relationship between cnidarians and dinoflagellates is one of the most widespread endosymbiosis in our oceans and provides the ecological basis of coral reef ecosystems. Although many studies have been undertaken to unravel the molecular mechanisms underlying these symbioses, we still know little about the epigenetic mechanisms that control the transcriptional responses to symbiosis.
Here, we used the model organism Exaiptasia diaphana to study the genome-wide patterns and putative functions of the histone modifications H3K27ac, H3K4me3, H3K9ac, H3K36me3, and H3K27me3 in symbiosis. While we find that their functions are generally conserved, we observed that colocalization of more than one modification and or DNA methylation correlated with significantly higher gene expression, suggesting a cooperative action of histone modifications and DNA methylation in promoting gene expression. Analysis of symbiosis genes revealed that activating histone modifications predominantly associated with symbiosis-induced genes involved in glucose metabolism, nitrogen transport, amino acid biosynthesis, and organism growth while symbiosis-suppressed genes were involved in catabolic processes.
Our results provide new insights into the mechanisms of prominent histone modifications and their interaction with DNA methylation in regulating symbiosis in cnidarians.
刺胞动物和甲藻之间的共生关系是海洋中最广泛的共生关系之一,为珊瑚礁生态系统提供了生态基础。尽管已经进行了许多研究来揭示这些共生关系背后的分子机制,但我们仍然对控制共生转录反应的表观遗传机制知之甚少。
在这里,我们使用模式生物 Exaiptasia diaphana 研究了组蛋白修饰 H3K27ac、H3K4me3、H3K9ac、H3K36me3 和 H3K27me3 在共生中的全基因组模式和可能的功能。虽然我们发现它们的功能通常是保守的,但我们观察到,一种以上修饰的共定位或 DNA 甲基化与基因表达显著增加相关,这表明组蛋白修饰和 DNA 甲基化在促进基因表达方面具有协同作用。对共生基因的分析表明,激活的组蛋白修饰主要与糖代谢、氮运输、氨基酸生物合成和生物体生长等与共生诱导基因相关,而被抑制的共生基因则参与分解代谢过程。
我们的研究结果为调控刺胞动物共生的主要组蛋白修饰及其与 DNA 甲基化相互作用的机制提供了新的见解。