Suppr超能文献

模拟宿主、饮食和细菌之间的相互作用网络可预测小鼠模型中的肥胖发生。

Modeling interaction networks between host, diet, and bacteria predicts obesogenesis in a mouse model.

作者信息

Larsen Peter E, Dai Yang

机构信息

Loyola Genomics Facility, Loyola University at Chicago Health Science Campus, Maywood, IL, United States.

Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States.

出版信息

Front Mol Biosci. 2022 Nov 15;9:1059094. doi: 10.3389/fmolb.2022.1059094. eCollection 2022.

Abstract

Host-microbiome interactions are known to have substantial effects on human health, but the diversity of the human microbiome makes it difficult to definitively attribute specific microbiome features to a host phenotype. One approach to overcoming this challenge is to use animal models of host-microbiome interaction, but it must be determined that relevant aspects of host-microbiome interactions are reflected in the animal model. One such experimental validation is an experiment by Ridura et al. In that experiment, transplanting a microbiome from a human into a mouse also conferred the human donor's obesity phenotype. We have aggregated a collection of previously published host-microbiome mouse-model experiments and combined it with thousands of sequenced and annotated bacterial genomes and metametabolomic pathways. Three computational models were generated, each model reflecting an aspect of host-microbiome interactions: 1) Predict the change in microbiome community structure in response to host diet using a community interaction network, 2) Predict metagenomic data from microbiome community structure, and 3) Predict host obesogenesis from modeled microbiome metagenomic data. These computationally validated models were combined into an integrated model of host-microbiome-diet interactions and used to replicate the Ridura experiment . The results of the computational models indicate that network-based models are significantly more predictive than similar but non-network-based models. Network-based models also provide additional insight into the molecular mechanisms of host-microbiome interaction by highlighting metabolites and metabolic pathways proposed to be associated with microbiome-based obesogenesis. While the models generated in this study are likely too specific to the animal models and experimental conditions used to train our models to be of general utility in a broader understanding of obesogenesis, the approach detailed here is expected to be a powerful tool of investigating multiple types of host-microbiome interactions.

摘要

宿主-微生物组相互作用对人类健康具有重大影响,然而人类微生物组的多样性使得难以明确地将特定的微生物组特征归因于宿主表型。克服这一挑战的一种方法是使用宿主-微生物组相互作用的动物模型,但必须确定宿主-微生物组相互作用的相关方面在动物模型中得到体现。里杜拉等人进行的一项实验就是这样一种实验验证。在该实验中,将人类的微生物组移植到小鼠体内,小鼠也呈现出人类供体的肥胖表型。我们汇总了一系列先前发表的宿主-微生物组小鼠模型实验,并将其与数千个已测序和注释的细菌基因组及代谢组学途径相结合。生成了三个计算模型,每个模型反映宿主-微生物组相互作用的一个方面:1)使用群落相互作用网络预测微生物组群落结构对宿主饮食的变化;2)根据微生物组群落结构预测宏基因组数据;3)根据模拟的微生物组宏基因组数据预测宿主肥胖发生。这些经过计算验证的模型被整合到一个宿主-微生物组-饮食相互作用的综合模型中,并用于复制里杜拉的实验。计算模型的结果表明,基于网络的模型比类似但非基于网络的模型具有显著更高的预测能力。基于网络的模型还通过突出显示被认为与基于微生物组的肥胖发生相关的代谢物和代谢途径,为宿主-微生物组相互作用的分子机制提供了额外的见解。虽然本研究中生成的模型可能过于特定于用于训练我们模型的动物模型和实验条件,无法在更广泛地理解肥胖发生方面具有普遍适用性,但这里详细介绍的方法有望成为研究多种类型宿主-微生物组相互作用的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ff/9705962/36aae724ab5a/fmolb-09-1059094-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验