Larsen Peter E, Dai Yang
Bioengineering Department, University of Illinois at Chicago, 851 South Morgan, SEO218, Chicago, IL 60607 USA ; Argonne National Laboratory, Biosciences Division, 9700 South Cass Ave, Argonne, IL 60439 USA.
Bioengineering Department, University of Illinois at Chicago, 851 South Morgan, SEO218, Chicago, IL 60607 USA.
Gigascience. 2015 Sep 14;4:42. doi: 10.1186/s13742-015-0084-3. eCollection 2015.
Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome's interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome.
Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles.
Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome-host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.
人类与一个紧密相连的细菌生态系统——微生物组,处于持续且至关重要的共生关系中,微生物组会影响人类健康的许多方面。当这种微生物生态系统受到破坏时,人类宿主的健康就会受损,这种情况称为生态失调。然而,人类微生物组的群落组成在个体之间以及随时间也存在巨大差异,这使得揭示微生物组与人类健康之间的潜在机制变得困难。我们提出,微生物组与其人类宿主的相互作用不一定取决于特定细菌种类的存在与否,而是取决于其群落代谢组,这是微生物组的一种涌现特性。
利用先前发表的一项关于人类肠道微生物组群体的纵向研究数据,我们推断出了有关微生物组群落酶谱和代谢组模型的信息。使用机器学习技术,我们证明,微生物组的总体预测群落酶功能谱和建模代谢组比观察到的微生物组群落组成或预测的酶功能谱更能预测生态失调。
预测生态失调的特定酶功能和代谢物为微生物组与宿主相互作用的分子机制提供了见解。利用机器学习从微生物组群落相互作用数据预测生态失调的能力,为理解人类微生物组与人类健康之间的联系提供了一个潜在的强大工具,指向基于微生物组的潜在诊断和治疗干预措施。