Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.
School of Life Sciences, Technical University of Munich, Munich, Germany.
Elife. 2022 Dec 2;11:e75826. doi: 10.7554/eLife.75826.
All animals face the challenge of finding nutritious resources in a changing environment. To maximize lifetime fitness, the exploratory behavior has to be flexible, but which behavioral elements adapt and what triggers those changes remain elusive. Using experiments and modeling, we characterized extensively how larvae foraging adapts to different food quality and distribution and how the foraging genetic background influences this adaptation. Our work shows that different food properties modulated specific motor programs. Food quality controls the traveled distance by modulating crawling speed and frequency of pauses and turns. Food distribution, and in particular the food-no food interface, controls turning behavior, stimulating turns toward the food when reaching the patch border and increasing the proportion of time spent within patches of food. Finally, the polymorphism in the gene (rover-sitter) of the larvae adjusts the magnitude of the behavioral response to different food conditions. This study defines several levels of control of foraging and provides the basis for the systematic identification of the neuronal circuits and mechanisms controlling each behavioral response.
所有动物都面临着在不断变化的环境中寻找营养资源的挑战。为了最大限度地提高终生适应度,探索行为必须具有灵活性,但哪些行为元素会适应,以及是什么触发了这些变化,仍然难以捉摸。我们使用实验和建模方法,广泛描述了幼虫觅食行为如何适应不同的食物质量和分布,以及觅食的遗传背景如何影响这种适应。我们的工作表明,不同的食物特性调节了特定的运动程序。食物质量通过调节爬行速度和暂停与转弯的频率来控制行进距离。食物分布,特别是食物-无食物界面,控制着转弯行为,当到达斑块边界时刺激向食物转弯,并增加在食物斑块内花费的时间比例。最后,幼虫中 基因(漫游者-驻留者)的多态性调节了对不同食物条件的行为反应的幅度。这项研究定义了觅食控制的几个层次,并为系统识别控制每种行为反应的神经元回路和机制提供了基础。