Vereshchuk Nataliia, Gil-Sepulcre Marcos, Ghaderian Abolfazl, Holub Jan, Gimbert-Suriñach Carolina, Llobet Antoni
Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avda. Països Catalans 16, 43007 Tarragona, Spain.
Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
Chem Soc Rev. 2023 Jan 3;52(1):196-211. doi: 10.1039/d2cs00463a.
Today sustainable and clean energy conversion strategies are based on sunlight and the use of water as a source of protons and electrons, in a similar manner as it happens in Photosystem II. To achieve this, the charge separation state induced by light has to be capable of oxidising water by 4 protons and 4 electrons and generating molecular oxygen. This oxidation occurs by the intermediacy of a catalyst capable of finding low-energy pathways proton-coupled electron transfer steps. The high energy involved in the thermodynamics of water oxidation reaction, coupled with its mechanistic complexity, is responsible for the difficulty of discovering efficient and oxidatively robust molecules capable of achieving such a challenging task. A significant number of Ru coordination complexes have been identified as water oxidation catalysts (WOCs) and are among the best understood from a mechanistic perspective. In this review, we describe the catalytic performance of these complexes and focus our attention on the factors that influence their performance during catalysis, especially in cases where a detailed mechanistic investigation has been carried out. The collective information extracted from all the catalysts studied allows one to identify the key features that govern the complex chemistry associated with the catalytic water oxidation reaction. This includes the stability of -O-Ru-O groups, the change in coordination number from CN6 to CN7 at Ru high oxidation states, the ligand flexibility, the capacity to undergo intramolecular proton transfer, the bond strain, the axial ligand substitution, and supramolecular effects. Overall, combining all this information generates a coherent view of this complex chemistry.
如今,可持续且清洁能源转换策略基于阳光,并以水作为质子和电子的来源,其方式与光系统II中的情况类似。要实现这一点,光诱导的电荷分离态必须能够将水氧化,产生4个质子和4个电子,并生成分子氧。这种氧化通过一种能够找到低能量途径进行质子耦合电子转移步骤的催化剂来实现。水氧化反应热力学中涉及的高能量,再加上其机理的复杂性,导致难以发现能够完成如此具有挑战性任务的高效且氧化稳定的分子。大量钌配位络合物已被鉴定为水氧化催化剂(WOCs),并且从机理角度来看是理解得最为透彻的一类。在本综述中,我们描述了这些络合物的催化性能,并将注意力集中在影响其催化过程中性能的因素上,特别是在已进行详细机理研究的情况下。从所有研究的催化剂中提取的综合信息使人们能够确定控制与催化水氧化反应相关的复杂化学过程的关键特征。这包括 -O-Ru-O 基团的稳定性、钌处于高氧化态时配位数从 CN6 到 CN7 的变化、配体的灵活性、进行分子内质子转移的能力、键应变、轴向配体取代以及超分子效应。总体而言,综合所有这些信息形成了对这种复杂化学过程的连贯认识。