Suppr超能文献

利用推特数据估算新冠疫情期间美国精神障碍症状的患病率:生态队列研究。

Using Twitter Data to Estimate the Prevalence of Symptoms of Mental Disorders in the United States During the COVID-19 Pandemic: Ecological Cohort Study.

作者信息

Cai Ruilie, Zhang Jiajia, Li Zhenlong, Zeng Chengbo, Qiao Shan, Li Xiaoming

机构信息

Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States.

South Carolina SmartState Center for Healthcare Quality, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States.

出版信息

JMIR Form Res. 2022 Dec 20;6(12):e37582. doi: 10.2196/37582.

Abstract

BACKGROUND

Existing research and national surveillance data suggest an increase of the prevalence of mental disorders during the COVID-19 pandemic. Social media platforms, such as Twitter, could be a source of data for estimation owing to its real-time nature, high availability, and large geographical coverage. However, there is a dearth of studies validating the accuracy of the prevalence of mental disorders on Twitter compared to that reported by the Centers for Disease Control and Prevention (CDC).

OBJECTIVE

This study aims to verify the feasibility of Twitter-based prevalence of mental disorders symptoms being an instrument for prevalence estimation, where feasibility is gauged via correlations between Twitter-based prevalence of mental disorder symptoms (ie, anxiety and depressive symptoms) and that based on national surveillance data. In addition, this study aims to identify how the correlations changed over time (ie, the temporal trend).

METHODS

State-level prevalence of anxiety and depressive symptoms was retrieved from the national Household Pulse Survey (HPS) of the CDC from April 2020 to July 2021. Tweets were retrieved from the Twitter streaming application programming interface during the same period and were used to estimate the prevalence of symptoms of mental disorders for each state using keyword analysis. Stratified linear mixed models were used to evaluate the correlations between the Twitter-based prevalence of symptoms of mental disorders and those reported by the CDC. The magnitude and significance of model parameters were considered to evaluate the correlations. Temporal trends of correlations were tested after adding the time variable to the model. Geospatial differences were compared on the basis of random effects.

RESULTS

Pearson correlation coefficients between the overall prevalence reported by the CDC and that on Twitter for anxiety and depressive symptoms were 0.587 (P<.001) and 0.368 (P<.001), respectively. Stratified by 4 phases (ie, April 2020, August 2020, October 2020, and April 2021) defined by the HPS, linear mixed models showed that Twitter-based prevalence for anxiety symptoms had a positive and significant correlation with CDC-reported prevalence in phases 2 and 3, while a significant correlation for depressive symptoms was identified in phases 1 and 3.

CONCLUSIONS

Positive correlations were identified between Twitter-based and CDC-reported prevalence, and temporal trends of these correlations were found. Geospatial differences in the prevalence of symptoms of mental disorders were found between the northern and southern United States. Findings from this study could inform future investigation on leveraging social media platforms to estimate symptoms of mental disorders and the provision of immediate prevention measures to improve health outcomes.

摘要

背景

现有研究和国家监测数据表明,在新冠疫情期间精神障碍的患病率有所上升。社交媒体平台,如推特,因其实时性、高可用性和广泛的地理覆盖范围,可能成为数据估计的来源。然而,与疾病控制和预防中心(CDC)报告的数据相比,验证推特上精神障碍患病率准确性的研究较少。

目的

本研究旨在验证基于推特的精神障碍症状患病率作为患病率估计工具的可行性,其中可行性通过基于推特的精神障碍症状(即焦虑和抑郁症状)患病率与基于国家监测数据的患病率之间的相关性来衡量。此外,本研究旨在确定这些相关性如何随时间变化(即时间趋势)。

方法

从2020年4月至2021年7月的疾病控制和预防中心国家家庭脉搏调查(HPS)中获取各州焦虑和抑郁症状的患病率。在同一时期从推特流式应用程序编程接口检索推文,并使用关键词分析来估计每个州精神障碍症状的患病率。分层线性混合模型用于评估基于推特的精神障碍症状患病率与疾病控制和预防中心报告的患病率之间的相关性。考虑模型参数的大小和显著性来评估相关性。在模型中添加时间变量后测试相关性的时间趋势。基于随机效应比较地理空间差异。

结果

疾病控制和预防中心报告的总体患病率与推特上焦虑和抑郁症状的患病率之间的皮尔逊相关系数分别为0.587(P<0.001)和0.368(P<0.001)。根据家庭脉搏调查定义的4个阶段(即2020年4月、2020年8月、2020年10月和2021年4月)进行分层,线性混合模型显示,基于推特的焦虑症状患病率在第2阶段和第3阶段与疾病控制和预防中心报告的患病率呈正相关且具有显著性,而抑郁症状在第1阶段和第3阶段具有显著相关性。

结论

基于推特的患病率与疾病控制和预防中心报告的患病率之间存在正相关,并且发现了这些相关性的时间趋势。在美国北部和南部之间发现了精神障碍症状患病率的地理空间差异。本研究结果可为未来利用社交媒体平台估计精神障碍症状以及提供即时预防措施以改善健康结果的调查提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03ef/9770024/5c2f21bea9a0/formative_v6i12e37582_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验