Suppr超能文献

利用纸显色阵列和神经网络对海鲜中致病微生物和腐败微生物进行无损和多重区分。

Nondestructive and multiplex differentiation of pathogenic microorganisms from spoilage microflora on seafood using paper chromogenic array and neural network.

机构信息

Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA 01854, United States; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, United States.

Environmental Microbial and Food Safety Lab and Food Quality Lab, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, United States.

出版信息

Food Res Int. 2022 Dec;162(Pt B):112052. doi: 10.1016/j.foodres.2022.112052. Epub 2022 Oct 17.

Abstract

Non-destructive detection of human foodborne pathogens is critical to ensuring food safety and public health. Here, we report a new method using a paper chromogenic array coupled with a machine learning neural network (PCA-NN) to detect viable pathogens in the presence of background microflora and spoilage microbe in seafood via volatile organic compounds sensing. Morganella morganii and Shewanella putrefaciens were used as the model pathogen and spoilage bacteria. The study evaluated microbial detection in monoculture and cocktail multiplex detection. The accuracy of PCA-NN detection was first assessed on standard media and later validated on cod and salmon as real seafood models with pathogenic and spoilage bacteria, as well as background microflora. In this study PCA-NN method successfully identified pathogenic microorganisms from microflora with or without the prevalent spoilage microbe, Shewanella putrefaciens in seafood, with accuracies ranging from 90% to 99%. This approach has the potential to advance smart packaging by achieving nondestructive pathogen surveillance on food without enrichment, incubation, or other sample preparation.

摘要

非破坏性检测人类食源性病原体对于确保食品安全和公共卫生至关重要。在这里,我们报告了一种新方法,该方法使用纸显色阵列结合机器学习神经网络(PCA-NN),通过挥发性有机化合物感测来检测海鲜中存在背景微生物群和腐败微生物时的存活病原体。摩根菌和腐败希瓦氏菌被用作模式病原体和腐败细菌。该研究评估了单培养和鸡尾酒多重检测中的微生物检测。首先在标准培养基上评估 PCA-NN 检测的准确性,然后在鳕鱼和三文鱼等真实海鲜模型上验证,这些模型含有致病和腐败细菌以及背景微生物群。在这项研究中,PCA-NN 方法成功地从带有或不带有流行腐败微生物的微生物群中识别出病原体微生物,在海鲜中,对希瓦氏菌的准确率范围为 90%至 99%。这种方法有可能通过在不进行富集、培养或其他样品制备的情况下对食品进行非破坏性病原体监测来推进智能包装。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验