Suppr超能文献

基于在线互知识转移的模型融合用于乳腺癌病理图像分类。

MF-OMKT: Model fusion based on online mutual knowledge transfer for breast cancer histopathological image classification.

机构信息

East China Jiaotong University, School of Information Engineering, Nanchang, China.

East China Jiaotong University, School of Information Engineering, Nanchang, China.

出版信息

Artif Intell Med. 2022 Dec;134:102433. doi: 10.1016/j.artmed.2022.102433. Epub 2022 Oct 22.

Abstract

Pathological diagnosis is considered as the benchmark for the detection of breast cancer. With the increasing number of patients, computer-aided histopathological image classification can assist pathologists in improving breast cancer diagnosis accuracy and working efficiency. However, a single model is insufficient for effective diagnosis, and this also does not accord with the principle of centralized decision-making. Starting from the real pathological diagnosis scenario, we propose a novel model fusion framework based on online mutual knowledge transfer (MF-OMKT) for breast cancer histopathological image classification. The OMKT part based on deep mutual learning (DML) imitates the mutual communication and learning between multiple experienced pathologists, which can break the isolation of single models and provides sufficient complementarity among heterogeneous networks for MF. The MF part based on adaptive feature fusion uses the complementarity to train a powerful fusion classifier. MF imitates the centralized decision-making process of these pathologists. We used the MF-OMKT model to classify breast cancer histopathological images (BreakHis dataset) into benign and malignant as well as eight subtypes. The accuracy of our model reaches the range of [99.27 %, 99.84 %] for binary classification. And that for multi-class classification reaches the range of [96.14 %, 97.53 %]. Additionally, MF-OMKT is applied to the classification of skin cancer images (ISIC 2018 dataset) and achieves an accuracy of 94.90 %. MF-OMKT is an effective and versatile framework for medical image classification.

摘要

病理诊断被认为是乳腺癌检测的基准。随着患者数量的增加,计算机辅助组织病理学图像分类可以帮助病理学家提高乳腺癌诊断的准确性和工作效率。然而,单一模型不足以进行有效的诊断,这也不符合集中决策的原则。从实际的病理诊断场景出发,我们提出了一种基于在线互知识转移(OMKT)的新型模型融合框架(MF-OMKT),用于乳腺癌组织病理学图像分类。基于深度互学习(DML)的 OMKT 部分模拟了多个有经验的病理学家之间的相互交流和学习,这可以打破单个模型的孤立状态,并为 MF 提供异构网络之间的充分互补性。基于自适应特征融合的 MF 部分利用互补性来训练强大的融合分类器。MF 模拟了这些病理学家的集中决策过程。我们使用 MF-OMKT 模型将乳腺癌组织病理学图像(BreakHis 数据集)分为良性和恶性以及 8 个亚型。我们的模型在二分类中的准确率达到了[99.27%,99.84%]的范围。在多类分类中,准确率达到了[96.14%,97.53%]的范围。此外,MF-OMKT 还应用于皮肤癌图像(ISIC 2018 数据集)的分类,并达到了 94.90%的准确率。MF-OMKT 是一种有效的、通用的医学图像分类框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验