文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多模态数据的乳腺癌分类更丰富的融合网络。

Richer fusion network for breast cancer classification based on multimodal data.

机构信息

High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

BMC Med Inform Decis Mak. 2021 Apr 22;21(Suppl 1):134. doi: 10.1186/s12911-020-01340-6.


DOI:10.1186/s12911-020-01340-6
PMID:33888098
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8061018/
Abstract

BACKGROUND: Deep learning algorithms significantly improve the accuracy of pathological image classification, but the accuracy of breast cancer classification using only single-mode pathological images still cannot meet the needs of clinical practice. Inspired by the real scenario of pathologists reading pathological images for diagnosis, we integrate pathological images and structured data extracted from clinical electronic medical record (EMR) to further improve the accuracy of breast cancer classification. METHODS: In this paper, we propose a new richer fusion network for the classification of benign and malignant breast cancer based on multimodal data. To make pathological image can be integrated more sufficient with structured EMR data, we proposed a method to extract richer multilevel feature representation of the pathological image from multiple convolutional layers. Meanwhile, to minimize the information loss for each modality before data fusion, we use the denoising autoencoder as a way to increase the low-dimensional structured EMR data to high-dimensional, instead of reducing the high-dimensional image data to low-dimensional before data fusion. In addition, denoising autoencoder naturally generalizes our method to make the accurate prediction with partially missing structured EMR data. RESULTS: The experimental results show that the proposed method is superior to the most advanced method in terms of the average classification accuracy (92.9%). In addition, we have released a dataset containing structured data from 185 patients that were extracted from EMR and 3764 paired pathological images of breast cancer, which can be publicly downloaded from http://ear.ict.ac.cn/?page_id=1663 . CONCLUSIONS: We utilized a new richer fusion network to integrate highly heterogeneous data to leverage the structured EMR data to improve the accuracy of pathological image classification. Therefore, the application of automatic breast cancer classification algorithms in clinical practice becomes possible. Due to the generality of the proposed fusion method, it can be straightforwardly extended to the fusion of other structured data and unstructured data.

摘要

背景:深度学习算法显著提高了病理图像分类的准确性,但仅使用单模态病理图像进行乳腺癌分类的准确性仍无法满足临床实践的需求。受病理学家阅读病理图像进行诊断的真实场景启发,我们整合了病理图像和从临床电子病历(EMR)中提取的结构化数据,以进一步提高乳腺癌分类的准确性。

方法:在本文中,我们提出了一种新的基于多模态数据的良性和恶性乳腺癌分类更丰富的融合网络。为了使病理图像能够更充分地与结构化 EMR 数据融合,我们提出了一种从多个卷积层中提取病理图像更丰富的多层次特征表示的方法。同时,为了在数据融合之前最小化每种模态的信息损失,我们使用去噪自编码器作为一种将低维结构化 EMR 数据增加到高维的方法,而不是在数据融合之前将高维图像数据降低到低维。此外,去噪自编码器自然地将我们的方法推广到可以在结构化 EMR 数据部分缺失的情况下进行准确预测。

结果:实验结果表明,该方法在平均分类准确率(92.9%)方面优于最先进的方法。此外,我们还发布了一个包含从 EMR 中提取的 185 名患者的结构化数据和 3764 对乳腺癌病理图像的数据集,可以从 http://ear.ict.ac.cn/?page_id=1663 公开下载。

结论:我们利用一种新的更丰富的融合网络来整合高度异构的数据,利用结构化 EMR 数据来提高病理图像分类的准确性。因此,自动乳腺癌分类算法在临床实践中的应用成为可能。由于所提出的融合方法具有通用性,它可以直接扩展到其他结构化数据和非结构化数据的融合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/1dcd29feb2d2/12911_2020_1340_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/1988dbcd1531/12911_2020_1340_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/ed0a9e6a6060/12911_2020_1340_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/e92b8a1ae492/12911_2020_1340_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/3b6850dc7353/12911_2020_1340_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/0767cee79d7e/12911_2020_1340_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/827cd5c7c8de/12911_2020_1340_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/5b4be81776ef/12911_2020_1340_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/1dcd29feb2d2/12911_2020_1340_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/1988dbcd1531/12911_2020_1340_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/ed0a9e6a6060/12911_2020_1340_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/e92b8a1ae492/12911_2020_1340_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/3b6850dc7353/12911_2020_1340_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/0767cee79d7e/12911_2020_1340_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/827cd5c7c8de/12911_2020_1340_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/5b4be81776ef/12911_2020_1340_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5775/8061018/1dcd29feb2d2/12911_2020_1340_Fig8_HTML.jpg

相似文献

[1]
Richer fusion network for breast cancer classification based on multimodal data.

BMC Med Inform Decis Mak. 2021-4-22

[2]
Breast cancer histopathological image classification using a hybrid deep neural network.

Methods. 2019-6-15

[3]
Breast cancer detection from biopsy images using nucleus guided transfer learning and belief based fusion.

Comput Biol Med. 2020-9

[4]
A twin convolutional neural network with hybrid binary optimizer for multimodal breast cancer digital image classification.

Sci Rep. 2024-1-6

[5]
Breast cancer pathological image classification based on deep learning.

J Xray Sci Technol. 2020

[6]
Research on breast cancer pathological image classification method based on wavelet transform and YOLOv8.

J Xray Sci Technol. 2024

[7]
Breast cancer cell nuclei classification in histopathology images using deep neural networks.

Int J Comput Assist Radiol Surg. 2017-8-31

[8]
Classification of histopathological images of breast cancer using an improved convolutional neural network model.

J Xray Sci Technol. 2022

[9]
Breast Tumor Classification in Ultrasound Images by Fusion of Deep Convolutional Neural Network and Shallow LBP Feature.

J Digit Imaging. 2023-6

[10]
Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion.

Comput Methods Programs Biomed. 2021-9

引用本文的文献

[1]
Deep learning radiomics of elastography for diagnosing compensated advanced chronic liver disease: an international multicenter study.

Vis Comput Ind Biomed Art. 2025-8-15

[2]
Deep Learning in Digital Breast Tomosynthesis: Current Status, Challenges, and Future Trends.

MedComm (2020). 2025-6-9

[3]
Multimodal data integration in early-stage breast cancer.

Breast. 2025-4

[4]
Multimodality Fusion Aspects of Medical Diagnosis: A Comprehensive Review.

Bioengineering (Basel). 2024-12-5

[5]
Advancing healthcare through multimodal data fusion: a comprehensive review of techniques and applications.

PeerJ Comput Sci. 2024-10-30

[6]
[Research progress of breast pathology image diagnosis based on deep learning].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024-10-25

[7]
Histopathology in focus: a review on explainable multi-modal approaches for breast cancer diagnosis.

Front Med (Lausanne). 2024-9-30

[8]
Integrating Omics Data and AI for Cancer Diagnosis and Prognosis.

Cancers (Basel). 2024-7-3

[9]
Multimodal risk prediction with physiological signals, medical images and clinical notes.

Heliyon. 2024-2-28

[10]
Public health implications of computer-aided diagnosis and treatment technologies in breast cancer care.

AIMS Public Health. 2023-10-25

本文引用的文献

[1]
BACH: Grand challenge on breast cancer histology images.

Med Image Anal. 2019-5-31

[2]
Cancer statistics, 2019.

CA Cancer J Clin. 2019-1-8

[3]
Deep Learning in Microscopy Image Analysis: A Survey.

IEEE Trans Neural Netw Learn Syst. 2017-11-22

[4]
Predicting cancer outcomes from histology and genomics using convolutional networks.

Proc Natl Acad Sci U S A. 2018-3-12

[5]
A survey on deep learning in medical image analysis.

Med Image Anal. 2017-7-26

[6]
Classification of breast cancer histology images using Convolutional Neural Networks.

PLoS One. 2017-6-1

[7]
Deep Learning in Medical Image Analysis.

Annu Rev Biomed Eng. 2017-6-21

[8]
A Dataset for Breast Cancer Histopathological Image Classification.

IEEE Trans Biomed Eng. 2016-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索