Suppr超能文献

前瞻性验证一种用于识别 COVID-19 患者病情迅速恶化高风险的动态预后模型。

Prospective validation of a dynamic prognostic model for identifying COVID-19 patients at high risk of rapid deterioration.

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2023 May;32(5):545-557. doi: 10.1002/pds.5580. Epub 2022 Dec 19.

Abstract

BACKGROUND

We sought to develop and prospectively validate a dynamic model that incorporates changes in biomarkers to predict rapid clinical deterioration in patients hospitalized for COVID-19.

METHODS

We established a retrospective cohort of hospitalized patients aged ≥18 years with laboratory-confirmed COVID-19 using electronic health records (EHR) from a large integrated care delivery network in Massachusetts including >40 facilities from March to November 2020. A total of 71 factors, including time-varying vital signs and laboratory findings during hospitalization were screened. We used elastic net regression and tree-based scan statistics for variable selection to predict rapid deterioration, defined as progression by two levels of a published severity scale in the next 24 h. The development cohort included the first 70% of patients identified chronologically in calendar time; the latter 30% served as the validation cohort. A cut-off point was estimated to alert clinicians of high risk of imminent clinical deterioration.

RESULTS

Overall, 3706 patients (2587 in the development and 1119 in the validation cohort) met the eligibility criteria with a median of 6 days of follow-up. Twenty-four variables were selected in the final model, including 16 dynamic changes of laboratory results or vital signs. Area under the ROC curve was 0.81 (95% CI, 0.79-0.82) in the development set and 0.74 (95% CI, 0.71-0.78) in the validation set. The model was well calibrated (slope = 0.84 and intercept = -0.07 on the calibration plot in the validation set). The estimated cut-off point, with a positive predictive value of 83%, was 0.78.

CONCLUSIONS

Our prospectively validated dynamic prognostic model demonstrated temporal generalizability in a rapidly evolving pandemic and can be used to inform day-to-day treatment and resource allocation decisions based on dynamic changes in biophysiological factors.

摘要

背景

我们旨在开发并前瞻性验证一种动态模型,该模型纳入了生物标志物的变化,以预测因 COVID-19 住院的患者的快速临床恶化。

方法

我们使用来自马萨诸塞州一个大型综合医疗服务网络的电子健康记录 (EHR) ,建立了一个回顾性队列,纳入了年龄≥18 岁、实验室确诊的 COVID-19 住院患者。该网络包括 2020 年 3 月至 11 月期间来自 40 多家医疗机构的患者。共筛选了 71 个因素,包括住院期间的时变生命体征和实验室检查结果。我们使用弹性网络回归和基于树的扫描统计来进行变量选择,以预测快速恶化,定义为在接下来的 24 小时内按发表的严重程度量表的两个级别进展。发展队列包括按日历时间顺序确定的前 70%的患者;后 30%的患者作为验证队列。估计一个截止值,以提醒临床医生注意即将发生的临床恶化的高风险。

结果

总体而言,共有 3706 名患者(发展队列 2587 名,验证队列 1119 名)符合入选标准,中位随访时间为 6 天。最终模型中选择了 24 个变量,包括 16 个实验室结果或生命体征的动态变化。在发展队列中,ROC 曲线下面积为 0.81(95%CI,0.79-0.82),在验证队列中为 0.74(95%CI,0.71-0.78)。该模型具有良好的校准度(验证队列校准图上的斜率为 0.84,截距为-0.07)。估计的截止值为 0.78,阳性预测值为 83%。

结论

我们前瞻性验证的动态预后模型在快速演变的大流行中具有时间上的可推广性,可以根据生物生理因素的动态变化,为日常治疗和资源分配决策提供信息。

相似文献

1
Prospective validation of a dynamic prognostic model for identifying COVID-19 patients at high risk of rapid deterioration.
Pharmacoepidemiol Drug Saf. 2023 May;32(5):545-557. doi: 10.1002/pds.5580. Epub 2022 Dec 19.
2
A Dynamic Prognostic Model for Identifying Vulnerable COVID-19 Patients at High Risk of Rapid Deterioration.
Pharmacoepidemiol Drug Saf. 2024 Aug;33(8):e5872. doi: 10.1002/pds.5872.
3
A predictive model of clinical deterioration among hospitalized COVID-19 patients by harnessing hospital course trajectories.
J Biomed Inform. 2021 Jun;118:103794. doi: 10.1016/j.jbi.2021.103794. Epub 2021 Apr 30.
5
Development and validation of a risk prediction model for hospital admission in COVID-19 patients presenting to primary care.
Eur J Gen Pract. 2024 Dec;30(1):2339488. doi: 10.1080/13814788.2024.2339488. Epub 2024 Apr 29.
9
Towards development of alert thresholds for clinical deterioration using continuous predictive analytics monitoring.
J Clin Monit Comput. 2020 Aug;34(4):797-804. doi: 10.1007/s10877-019-00361-5. Epub 2019 Jul 20.

引用本文的文献

1
A Dynamic Prognostic Model for Identifying Vulnerable COVID-19 Patients at High Risk of Rapid Deterioration.
Pharmacoepidemiol Drug Saf. 2024 Aug;33(8):e5872. doi: 10.1002/pds.5872.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验