Suppr超能文献

用于识别 COVID-19 高危快速恶化脆弱患者的动态预后模型。

A Dynamic Prognostic Model for Identifying Vulnerable COVID-19 Patients at High Risk of Rapid Deterioration.

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2024 Aug;33(8):e5872. doi: 10.1002/pds.5872.

Abstract

PURPOSE

We aimed to validate and, if performance was unsatisfactory, update the previously published prognostic model to predict clinical deterioration in patients hospitalized for COVID-19, using data following vaccine availability.

METHODS

Using electronic health records of patients ≥18 years, with laboratory-confirmed COVID-19, from a large care-delivery network in Massachusetts, USA, from March 2020 to November 2021, we tested the performance of the previously developed prediction model and updated the prediction model by incorporating data after availability of COVID-19 vaccines. We randomly divided data into development (70%) and validation (30%) cohorts. We built a model predicting worsening in a published severity scale in 24 h by LASSO regression and evaluated performance by c-statistic and Brier score.

RESULTS

Our study cohort consisted of 8185 patients (Development: 5730 patients [mean age: 62; 44% female] and Validation: 2455 patients [mean age: 62; 45% female]). The previously published model had suboptimal performance using data after November 2020 (N = 4973, c-statistic = 0.60. Brier score = 0.11). After retraining with the new data, the updated model included 38 predictors including 18 changing biomarkers. Patients hospitalized after Jun 1st, 2021 (when COVID-19 vaccines became widely available in Massachusetts) were younger and had fewer comorbidities than those hospitalized before. The c-statistic and Brier score were 0.77 and 0.13 in the development cohort, and 0.73 and 0.14 in the validation cohort.

CONCLUSION

The characteristics of patients hospitalized for COVID-19 differed substantially over time. We developed a new dynamic model for rapid progression with satisfactory performance in the validation set.

摘要

目的

本研究旨在验证并更新之前发表的预测模型,以预测 COVID-19 住院患者的临床恶化情况,使用疫苗供应后的数据。

方法

我们使用美国马萨诸塞州一个大型医疗服务网络的电子病历,对 2020 年 3 月至 2021 年 11 月期间≥18 岁、实验室确诊为 COVID-19 的患者进行了研究。我们对之前开发的预测模型进行了性能测试,并通过纳入 COVID-19 疫苗供应后的数据对预测模型进行了更新。我们将数据随机分为开发(70%)和验证(30%)两个队列。我们通过 LASSO 回归建立了一个预测 24 小时内恶化到既定严重程度的模型,并通过 C 统计量和 Brier 评分评估了模型性能。

结果

本研究队列包括 8185 例患者(开发队列:5730 例患者[平均年龄:62 岁;44%为女性]和验证队列:2455 例患者[平均年龄:62 岁;45%为女性])。使用 2020 年 11 月以后的数据,之前发表的模型表现不佳(N=4973,C 统计量=0.60,Brier 评分=0.11)。在使用新数据进行重新训练后,更新后的模型纳入了 38 个预测因子,包括 18 个变化的生物标志物。2021 年 6 月 1 日(COVID-19 疫苗在马萨诸塞州广泛供应)之后住院的患者比之前住院的患者年龄更小,合并症更少。开发队列的 C 统计量和 Brier 评分分别为 0.77 和 0.13,验证队列的 C 统计量和 Brier 评分分别为 0.73 和 0.14。

结论

COVID-19 住院患者的特征随时间发生了显著变化。我们开发了一个新的快速进展动态模型,在验证集上表现出令人满意的性能。

相似文献

1
A Dynamic Prognostic Model for Identifying Vulnerable COVID-19 Patients at High Risk of Rapid Deterioration.
Pharmacoepidemiol Drug Saf. 2024 Aug;33(8):e5872. doi: 10.1002/pds.5872.
2
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
4
Accuracy of routine laboratory tests to predict mortality and deterioration to severe or critical COVID-19 in people with SARS-CoV-2.
Cochrane Database Syst Rev. 2024 Aug 6;8(8):CD015050. doi: 10.1002/14651858.CD015050.pub2.
5
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.
7
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Antibody tests for identification of current and past infection with SARS-CoV-2.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2.

本文引用的文献

1
Prospective validation of a dynamic prognostic model for identifying COVID-19 patients at high risk of rapid deterioration.
Pharmacoepidemiol Drug Saf. 2023 May;32(5):545-557. doi: 10.1002/pds.5580. Epub 2022 Dec 19.
2
Prognostic Modeling and Major Dataset Shifts During the COVID-19 Pandemic: What Have We Learned for the Next Pandemic?
JAMA Health Forum. 2022 May 6;3(5):e221103. doi: 10.1001/jamahealthforum.2022.1103.
4
Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission.
Nature. 2022 Sep;609(7925):101-108. doi: 10.1038/s41586-022-05049-6. Epub 2022 Jul 7.
5
Global landscape of SARS-CoV-2 genomic surveillance and data sharing.
Nat Genet. 2022 Apr;54(4):499-507. doi: 10.1038/s41588-022-01033-y. Epub 2022 Mar 28.
6
Modeling of waning immunity after SARS-CoV-2 vaccination and influencing factors.
Nat Commun. 2022 Mar 28;13(1):1614. doi: 10.1038/s41467-022-29225-4.
7
Comparing the longer-term effectiveness of a single dose of the Pfizer-BioNTech and Oxford-AstraZeneca COVID-19 vaccines across the age spectrum.
EClinicalMedicine. 2022 Mar 12;46:101344. doi: 10.1016/j.eclinm.2022.101344. eCollection 2022 Apr.
8
The COVID-19 Pandemic Strikes Again and Again and Again.
JAMA Netw Open. 2022 Mar 1;5(3):e221760. doi: 10.1001/jamanetworkopen.2022.1760.
9
Living with endemic COVID-19.
Public Health. 2022 Apr;205:26-27. doi: 10.1016/j.puhe.2022.01.017. Epub 2022 Jan 24.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验