Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, United States.
Department of Medicine, University of Arizona, Tucson, AZ, United States.
Front Endocrinol (Lausanne). 2022 Nov 16;13:964681. doi: 10.3389/fendo.2022.964681. eCollection 2022.
Misalignment between the environment and one's circadian system is a common phenomenon (e.g., jet lag) which can have myriad negative effects on physical and mental health, mental and physiological performance, and sleep. Absent any intervention, the circadian system adjusts only 0.5-1.0 h per day to a shifted light-dark and sleep-wake schedule. Bright light facilitates circadian adjustment, but in field studies, bright light is only modestly better than no stimulus. Evidence indicates that exercise and melatonin can be combined with bright light to elicit larger shifts but no study has combined all of these stimuli or administered them at the times that are known to elicit the largest effects on the circadian system. The aims of this study are to compare the effects of different treatments on circadian adjustment to simulated jet lag in a laboratory. Following 2 weeks of home recording, 36 adults will spend 6.5 consecutive days in the laboratory. Following an 8 h period of baseline sleep recording on the participant's usual sleep schedule on Night 1 (e.g., 0000-0800 h), participants will undergo a 26 h circadian assessment protocol involving 2 h wake intervals in dim light and 1 h of sleep in darkness, repeated throughout the 26 h. During this protocol, all urine voidings will be collected; mood, sleepiness, psychomotor vigilance, and pain sensitivity will be assessed every 3 h, forehead temperature will be assessed every 90 min, and anaerobic performance (Wingate test) will be tested every 6 h. Following, the circadian assessment protocol, the participant's sleep-wake and light dark schedule will be delayed by 8 h compared with baseline (e.g., 0800-1400 h), analogous to travelling 8 times zones westward. This shifted schedule will be maintained for 3 days. During the 3 days on the delayed schedule, participants will be randomized to one of 3 treatments: (1) Dim Red Light + Placebo Capsules, (2) Bright Light Alone, (3) Bright Light + Exercise + Melatonin. During the final 26 h, all conditions and measures of the baseline circadian protocol will be repeated. Acclimatization will be defined by shifts in circadian rhythms of aMT6s, psychomotor vigilance, Wingate Anaerobic performance, mood, and sleepiness, and less impairments in these measures during the shifted schedule compared with baseline. We posit that Bright Light Alone and Bright Light + Exercise + Melatonin will elicit greater shifts in circadian rhythms and less impairments in sleep, mood, performance, and sleepiness compared with Dim Red Light + Placebo Capsules. We also posit that Bright Light + Exercise + Melatonin will elicit greater shifts and less impairments than Bright Light Alone.
环境与人体生物钟之间的失调是一种常见现象(例如,时差),它会对身心健康、心理和生理表现以及睡眠产生无数负面影响。如果没有任何干预,生物钟每天只能调整 0.5-1.0 小时以适应变化的光照-黑暗和睡眠-清醒时间表。明亮的光线有助于生物钟调整,但在现场研究中,明亮的光线只是略有改善,而不是没有刺激。有证据表明,运动和褪黑素可以与明亮的光线结合使用,以产生更大的转变,但没有研究将所有这些刺激结合起来,或者在已知对生物钟系统产生最大影响的时间进行这些刺激。本研究的目的是比较不同治疗方法对模拟时差引起的生物钟调整的影响。在家庭记录 2 周后,36 名成年人将在实验室中连续 6.5 天。在第 1 天(例如,0000-0800 小时)按照参与者通常的睡眠时间表进行 8 小时基线睡眠记录后,参与者将进行 26 小时的生物钟评估协议,包括在微光下进行 2 小时的清醒间隔和在黑暗中进行 1 小时的睡眠,在 26 小时内重复进行。在此协议期间,将收集所有尿液;每 3 小时评估一次情绪、嗜睡、精神运动警觉性和疼痛敏感性,每 90 分钟评估一次前额温度,每 6 小时测试一次无氧性能(Wingate 测试)。随后,根据基线(例如,0800-1400 小时)将参与者的睡眠-觉醒和光暗时间表向后延迟 8 小时,类似于向西飞行 8 个时区。这个移位的时间表将维持 3 天。在延迟时间表的 3 天中,参与者将随机分配到以下 3 种治疗方法之一:(1)暗红光+安慰剂胶囊,(2)单独明亮的光,(3)明亮的光+运动+褪黑素。在最后 26 小时内,将重复基础生物钟协议的所有条件和测量。适应将通过 aMT6s、精神运动警觉性、Wingate 无氧性能、情绪和嗜睡的昼夜节律变化来定义,与基线相比,在移位时间表中这些测量值的损伤较小。我们假设与暗红光+安慰剂胶囊相比,单独使用明亮的光线和明亮的光线+运动+褪黑素将引起更大的昼夜节律变化,并且对睡眠、情绪、表现和嗜睡的损伤较小。我们还假设与单独使用明亮的光线相比,明亮的光线+运动+褪黑素将引起更大的变化和更小的损伤。