Georgiev Miroslav, Chamati Hassan
G Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, Tsarigradsko Chaussée 72, 1784Sofia, Bulgaria.
ACS Omega. 2022 Nov 15;7(47):42664-42673. doi: 10.1021/acsomega.2c06119. eCollection 2022 Nov 29.
The design of mononuclear molecular nanomagnets exhibiting a huge energy barrier to the reversal of magnetization have seen a surge of interest during the last few decades due to their potential technological applications. More specifically, single-ion magnets are peculiarly attractive by virtue of their rich quantum behavior and distinct fine structure. These are viable candidates for implementation as single-molecule high-density information storage devices and other applications in future quantum technologies. The present review presents the comprehensive state of the art in the topic of single-ion magnets possessing an eminent magnetization-reversal barrier, very slow magnetic relaxation and high blocking temperature. We turn our attention to the achievements in the synthesis of 3 and 4 single-ion magnets during the last two decades and discuss the observed magnetostructural properties underlying the anisotropy behavior and the ensuing remanence. Furthermore, we highlight the fundamental theoretical aspects to shed light on the complex behavior of these nanosized magnetic entities. In particular, we focus on key notions, such as zero-field splitting, anisotropy energy and quantum tunneling of the magnetization and their interdependence.
在过去几十年中,由于其潜在的技术应用,具有巨大磁化反转能垒的单核分子纳米磁体的设计引起了人们极大的兴趣。更具体地说,单离子磁体因其丰富的量子行为和独特的精细结构而特别具有吸引力。这些是未来量子技术中作为单分子高密度信息存储设备及其他应用的可行候选者。本综述介绍了具有显著磁化反转能垒、非常缓慢的磁弛豫和高阻塞温度的单离子磁体这一主题的全面技术现状。我们将注意力转向过去二十年中3核和4核单离子磁体合成方面的成就,并讨论观察到的磁各向异性行为及其剩余磁化强度背后的磁结构性质。此外,我们强调基本理论方面,以阐明这些纳米级磁性实体的复杂行为。特别是,我们关注诸如零场分裂、各向异性能量和磁化的量子隧穿等关键概念及其相互依存关系。