Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
Adv Mater. 2023 Feb;35(7):e2206933. doi: 10.1002/adma.202206933. Epub 2022 Dec 20.
Developing scalable electrical stimulating platforms for cell and tissue engineering applications is limited by external power source dependency, wetting resistance, microscale size requirements, and suitable flexibility. Here, a versatile and scalable platform is developed to enable tunable electrical stimulation for biological applications by harnessing the giant magnetoelastic effect in soft systems, converting gentle air pressure (100-400 kPa) to yield a current of up to 10.5 mA and a voltage of 9.5 mV. The platform can be easily manufactured and scaled up for integration in multiwell magnetoelastic plates via 3D printing. The authors demonstrate that the electrical stimulation generated by this platform enhances the conversion of fibroblasts into neurons up to 2-fold (104%) and subsequent neuronal maturation up to 3-fold (251%). This easily configurable electrical stimulation device has broad applications in high throughput organ-on-a-chip systems, and paves the way for future development of neural engineering, including cellular therapy via implantable self-powered electrical stimulation devices.
开发可扩展的电刺激平台用于细胞和组织工程应用受到外部电源依赖性、抗湿性、微尺度尺寸要求和合适的柔韧性的限制。在这里,开发了一种通用且可扩展的平台,通过利用软系统中的巨磁弹性效应来实现生物应用的可调电刺激,将温和的气压(100-400 kPa)转换为高达 10.5 mA 的电流和 9.5 mV 的电压。该平台可以通过 3D 打印轻松制造和扩展,以集成到多井磁弹性板中。作者证明,该平台产生的电刺激可将成纤维细胞转化为神经元的效率提高至 2 倍(104%),随后神经元成熟度提高至 3 倍(251%)。这种易于配置的电刺激设备在高通量器官芯片系统中有广泛的应用,并为未来的神经工程发展铺平了道路,包括通过可植入自供电电刺激设备进行细胞治疗。