Suppr超能文献

微流控装置中的分子和纳米疗法对脑肿瘤模型的疗效。

Efficacy of molecular and nano-therapies on brain tumor models in microfluidic devices.

机构信息

Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.

3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.

出版信息

Biomater Adv. 2023 Jan;144:213227. doi: 10.1016/j.bioadv.2022.213227. Epub 2022 Nov 30.

Abstract

The three-dimensional (3D) organization of cells affects their mobility, proliferation, and overall response to treatment. Spheroids, organoids, and microfluidic chips are used in cancer research to reproduce in vitro the complex and dynamic malignant microenvironment. Herein, single- and double-channel microfluidic devices are used to mimic the spatial organization of brain tumors and investigate the therapeutic efficacy of molecular and nano anti-cancer agents. Human glioblastoma multiforme (U87-MG) cells were cultured into a Matrigel matrix embedded within the microfluidic devices and exposed to different doses of free docetaxel (DTXL), docetaxel-loaded spherical polymeric nanoparticles (DTXL-SPN), and the aromatic N-glucoside N-(fluorenylmethoxycarbonyl)-glucosamine-6-phosphate (Fmoc-Glc6P). We observed that in the single-channel microfluidic device, brain tumor cells are more susceptible to DTXL treatment as compared to conventional cell monolayers (50-fold lower IC values). In the double-channel device, the cytotoxicity of free DTXL and DTXL-SPN is comparable, but significantly lowered as compared to the single-channel configuration. Finally, the administration of 500 μM Fmoc-Glc6P in the double-channel microfluidic device shows a 50 % U87-MG cell survival after only 24 h, and no deleterious effect on human astrocytes over 72 h. Concluding, the proposed microfluidic chips can be used to reproduce the 3D complex spatial arrangement of solid tumors and to assess the anti-cancer efficacy of therapeutic compounds administrated in situ or systemically.

摘要

细胞的三维(3D)组织会影响其迁移、增殖和整体治疗反应。球体、类器官和微流控芯片被用于癌症研究,以在体外重现复杂且动态的恶性微环境。在此,使用单通道和双通道微流控装置来模拟脑肿瘤的空间组织,并研究分子和纳米抗癌剂的治疗效果。将人多形性胶质母细胞瘤(U87-MG)细胞培养到微流控装置中的基质胶中,并使其暴露于不同剂量的游离多西紫杉醇(DTXL)、载多西紫杉醇的球形聚合物纳米粒(DTXL-SPN)和芳香 N-葡糖酰胺 N-(芴甲氧羰基)-葡糖胺-6-磷酸(Fmoc-Glc6P)。我们观察到,在单通道微流控装置中,脑肿瘤细胞比传统的细胞单层(IC 值低 50 倍)更容易受到 DTXL 治疗的影响。在双通道装置中,游离 DTXL 和 DTXL-SPN 的细胞毒性相当,但与单通道结构相比,明显降低。最后,在双通道微流控装置中给予 500 μM Fmoc-Glc6P,仅 24 小时后 U87-MG 细胞的存活率为 50%,72 小时后对人星形胶质细胞没有有害影响。总之,所提出的微流控芯片可用于重现实体瘤的 3D 复杂空间排列,并评估原位或系统给药的治疗化合物的抗癌效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验