Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany.
BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany.
Lab Chip. 2023 Nov 21;23(23):4967-4985. doi: 10.1039/d3lc00492a.
Electrical stimulation of brain tissue slices has been a method used to understand mechanisms imparted by transcranial direct current stimulation (tDCS), but there are significant direct current electric field (dcEF) dosage and electrochemical by-product concerns in conventional experimental setups that may impact translational findings. Therefore, we developed an on-chip platform with fluidic, electrochemical, and magnetically-induced spatial control. Fluidically, the chamber geometrically confines precise dcEF delivery to the enclosed brain slice and allows for tissue recovery in order to monitor post-stimulation effects. Electrochemically, conducting hydrogel electrodes mitigate stimulation-induced faradaic reactions typical of commonly-used metal electrodes. Magnetically, we applied ferromagnetic substrates beneath the tissue and used an external permanent magnet to enable rotational control in relation to the dcEF. By combining the microfluidic chamber with live-cell calcium imaging and electrophysiological recordings, we showcased the potential to study the acute and lasting effects of dcEFs with the potential of providing multi-session stimulation. This on-chip bioelectronic platform presents a modernized yet simple solution to electrically stimulate explanted tissue by offering more environmental control to users, which unlocks new opportunities to conduct thorough brain stimulation mechanistic investigations.
脑片的电刺激一直是一种用于了解经颅直流电刺激 (tDCS) 赋予的机制的方法,但在传统的实验设置中,存在显著的直流电场 (dcEF) 剂量和电化学副产物问题,这可能会影响转化研究的结果。因此,我们开发了一种具有流体、电化学和磁诱导空间控制的片上平台。在流体方面,腔室的几何形状将精确的直流电场限制在封闭的脑片中,并允许组织恢复,以监测刺激后的影响。在电化学方面,导电水凝胶电极减轻了常见金属电极引起的刺激诱导的法拉第反应。在磁场方面,我们在组织下方应用了铁磁衬底,并使用外部永磁体来实现与直流电场相关的旋转控制。通过将微流控室与活细胞钙成像和电生理记录相结合,我们展示了用该平台研究直流电场的急性和持久影响的潜力,为提供多会话刺激提供了可能。该片上生物电子平台为电刺激离体组织提供了一种现代化但简单的解决方案,为用户提供了更多的环境控制,为进行彻底的脑刺激机制研究开辟了新的机会。