Langie Kezia Megagita Gerby, Tak Kyungjae, Kim Changsoo, Lee Hee Won, Park Kwangho, Kim Dongjin, Jung Wonsang, Lee Chan Woo, Oh Hyung-Suk, Lee Dong Ki, Koh Jai Hyun, Min Byoung Koun, Won Da Hye, Lee Ung
Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
Department of Chemistry, Kookmin University, Seoul, 02707, Republic of Korea.
Nat Commun. 2022 Dec 5;13(1):7482. doi: 10.1038/s41467-022-35239-9.
Carbon capture and utilization technology has been studied for its practical ability to reduce CO emissions and enable economical chemical production. The main challenge of this technology is that a large amount of thermal energy must be provided to supply high-purity CO and purify the product. Herein, we propose a new concept called reaction swing absorption, which produces synthesis gas (syngas) with net-zero CO emission through direct electrochemical CO reduction in a newly proposed amine solution, triethylamine. Experimental investigations show high CO absorption rates (>84%) of triethylamine from low CO concentrated flue gas. In addition, the CO Faradaic efficiency in a triethylamine supplied membrane electrode assembly electrolyzer is approximately 30% (@-200 mA cm), twice higher than those in conventional alkanolamine solvents. Based on the experimental results and rigorous process modeling, we reveal that reaction swing absorption produces high pressure syngas at a reasonable cost with negligible CO emissions. This system provides a fundamental solution for the CO crossover and low system stability of electrochemical CO reduction.
碳捕获与利用技术因其在减少二氧化碳排放及实现经济化化学品生产方面的实际能力而受到研究。该技术的主要挑战在于必须提供大量热能以供应高纯度二氧化碳并提纯产品。在此,我们提出一种名为反应摆动吸收的新概念,它通过在新提出的胺溶液三乙胺中进行直接电化学二氧化碳还原,产生净零二氧化碳排放的合成气。实验研究表明,三乙胺对低浓度二氧化碳烟道气具有较高的二氧化碳吸收率(>84%)。此外,在供应三乙胺的膜电极组件电解槽中,二氧化碳法拉第效率约为30%(@-200 mA cm),比传统链烷醇胺溶剂中的效率高出两倍。基于实验结果和严格的过程建模,我们发现反应摆动吸收能够以合理成本生产高压合成气,且二氧化碳排放可忽略不计。该系统为电化学二氧化碳还原中的二氧化碳交叉渗透和低系统稳定性提供了一个基本解决方案。