Suppr超能文献

一种用于二氧化碳还原的高多孔铜电催化剂。

A Highly Porous Copper Electrocatalyst for Carbon Dioxide Reduction.

机构信息

Center for Catalytic Science & Technology, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.

出版信息

Adv Mater. 2018 Dec;30(49):e1803111. doi: 10.1002/adma.201803111. Epub 2018 Oct 10.

Abstract

Electrochemical reduction of carbon dioxide (CO ) is an appealing approach toward tackling climate change associated with atmospheric CO emissions. This approach uses CO as the carbon feedstock to produce value-added chemicals, resulting in a carbon-neutral (or even carbon-negative) process for chemical production. Many efforts have been devoted to the development of CO electrolysis devices that can be operated at industrially relevant rates; however, limited progress has been made, especially for valuable C products. Herein, a nanoporous copper CO reduction catalyst is synthesized and integrated into a microfluidic CO flow cell electrolyzer. The CO electrolyzer exhibits a current density of 653 mA cm with a C product selectivity of ≈62% at an applied potential of -0.67 V (vs reversible hydrogen electrode). The highly porous electrode structure facilitates rapid gas transport across the electrode-electrolyte interface at high current densities. Further investigations on electrolyte effects reveal that the surface pH value is substantially different from the pH of bulk electrolyte, especially for nonbuffering near-neutral electrolytes when operating at high currents.

摘要

电化学还原二氧化碳(CO )是应对与大气 CO 排放相关的气候变化的一种有吸引力的方法。该方法使用 CO 作为碳原料来生产高附加值化学品,从而实现化学生产的碳中性(甚至碳负性)过程。人们已经投入了大量的努力来开发可在工业相关速率下运行的 CO 电解装置;然而,进展有限,特别是对于有价值的 C 产品。在此,合成了一种纳米多孔铜 CO 还原催化剂,并将其集成到微流控 CO 流动池电解槽中。在施加的-0.67 V(相对于可逆氢电极)下,CO 电解槽的电流密度为 653 mA cm,C 产品选择性约为 62%。高度多孔的电极结构有利于在高电流密度下在电极-电解质界面快速传输气体。对电解质影响的进一步研究表明,表面 pH 值与电解质本体 pH 值有很大不同,尤其是在高电流下使用非缓冲近中性电解质时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验