Grogan Martha, Lopez-Jimenez Francisco, Guthrie Spencer, Kumar Nisith, Langevin Reuben, Lousada Isabelle, Witteles Ronald, Royyuru Ajay, Rosenzweig Michael, Cairns-Smith Sarah, Ouyang David
Department of Cardiovascular Diseases Mayo Clinic Rochester MN USA.
Attralus San Francisco CA USA.
J Am Heart Assoc. 2025 Apr 15;14(8):e036533. doi: 10.1161/JAHA.124.036533. Epub 2025 Apr 10.
Nonspecific symptoms and other diagnostic challenges lead to underdiagnosis of cardiac amyloidosis (CA). Artificial intelligence (AI) could help address these challenges, but a summary of the performance of these tools is lacking. This narrative review of published literature describes the performance of AI tools that use data from ECGs and echocardiography to improve identification of CA and challenges that hinder adoption of these tools. Thirteen studies met inclusion criteria with sample sizes ranging from 50 to 2451 patients. Four studies used ECG data, 8 used echocardiography data, and 1 used both. The CA gold standard was typically defined as a CA diagnosis in an institutional or other database but the requirements for these diagnoses were heterogenous across studies, and many did not distinguish among CA subtypes. AI model development varied considerably, and only 4 studies included external validation. The ability of models to predict CA ranged from 0.71 to 1.00, sensitivity ranged from 16% to 100%, and specificity from 75% to 100%. Only 1 study reported model performance across strata of sex, age, race, and CA type. Persistent challenges to AI adoption include usability, cost, value added, electronic health record/information technology interoperability, patient-related factors, regulation, and privacy and liability. Published studies on AI for improved identification of CA show favorable performance measures but numerous methodologic and other challenges must be addressed before these tools are more widely adopted.
非特异性症状和其他诊断难题导致心脏淀粉样变性(CA)的诊断不足。人工智能(AI)有助于应对这些挑战,但目前缺乏对这些工具性能的总结。这篇对已发表文献的叙述性综述描述了利用心电图和超声心动图数据来改善CA识别的AI工具的性能,以及阻碍这些工具应用的挑战。13项研究符合纳入标准,样本量从50至2451名患者不等。4项研究使用了心电图数据,8项使用了超声心动图数据,1项同时使用了两者。CA的金标准通常定义为机构或其他数据库中的CA诊断,但这些诊断的要求在各研究中存在差异,而且许多研究没有区分CA亚型。AI模型的开发差异很大,只有4项研究进行了外部验证。模型预测CA的能力范围为0.71至1.00,敏感性范围为16%至100%,特异性范围为75%至100%。只有1项研究报告了模型在性别、年龄、种族和CA类型各分层中的性能。AI应用面临的持续挑战包括可用性、成本、附加值、电子健康记录/信息技术的互操作性、患者相关因素、监管以及隐私和责任。关于利用AI改善CA识别的已发表研究显示了良好的性能指标,但在这些工具更广泛应用之前,必须解决众多方法学和其他方面的挑战。