Suppr超能文献

基于网络的在线咨询会话中自我伤害和自杀意念披露的预测

Network-based prediction of the disclosure of ideation about self-harm and suicide in online counseling sessions.

作者信息

Xu Zhongzhi, Chan Christian S, Zhang Qingpeng, Xu Yucan, He Lihong, Cheung Florence, Yang Jiannan, Chan Evangeline, Fung Jerry, Tsang Christy, Liu Joyce, Yip Paul S F

机构信息

School of Public Health, Sun Yat-sen University, Guangzhou, China.

Hong Kong Jockey Club Centre for Suicide Research and Prevention, The University of Hong Kong, Hong Kong SAR, China.

出版信息

Commun Med (Lond). 2022 Dec 6;2(1):156. doi: 10.1038/s43856-022-00222-4.

Abstract

BACKGROUND

In psychological services, the transition to the disclosure of ideation about self-harm and suicide (ISS) is a critical point warranting attention. This study developed and tested a succinct descriptor to predict such transitions in an online synchronous text-based counseling service.

METHOD

We analyzed two years' worth of counseling sessions (N = 49,770) from Open Up, a 24/7 service in Hong Kong. Sessions from Year 1 (N = 20,618) were used to construct a word affinity network (WAN), which depicts the semantic relationships between words. Sessions from Year 2 (N = 29,152), including 1168 with explicit ISS, were used to train and test the downstream ISS prediction model. We divided and classified these sessions into ISS blocks (ISSBs), blocks prior to ISSBs (PISSBs), and non-ISS blocks (NISSBs). To detect PISSB, we adopted complex network approaches to examine the distance among different types of blocks in WAN.

RESULTS

Our analyses find that words within a block tend to form a module in WAN and that network-based distance between modules is a reliable indicator of PISSB. The proposed model yields a c-statistic of 0.79 in identifying PISSB.

CONCLUSIONS

This simple yet robust network-based model could accurately predict the transition point of suicidal ideation prior to its explicit disclosure. It can potentially improve the preparedness and efficiency of help-providers in text-based counseling services for mitigating self-harm and suicide.

摘要

背景

在心理服务中,向透露自我伤害和自杀念头(ISS)的转变是一个值得关注的关键点。本研究开发并测试了一个简洁的描述符,以预测在线同步文本咨询服务中的此类转变。

方法

我们分析了来自香港一项全天候服务“敞开心扉”的两年咨询记录(N = 49,770)。第一年的记录(N = 20,618)用于构建一个词亲和网络(WAN),该网络描绘了词之间的语义关系。第二年的记录(N = 29,152),包括1168条有明确ISS的记录,用于训练和测试下游的ISS预测模型。我们将这些记录划分为ISS块(ISSBs)、ISS块之前的块(PISSBs)和非ISS块(NISSBs)。为了检测PISSB,我们采用复杂网络方法来检查WAN中不同类型块之间的距离。

结果

我们的分析发现,一个块内的词往往会在WAN中形成一个模块,并且模块之间基于网络的距离是PISSB的可靠指标。所提出的模型在识别PISSB时的c统计量为0.79。

结论

这个简单而强大的基于网络的模型可以在自杀念头明确透露之前准确预测其转变点。它有可能提高基于文本的咨询服务中帮助提供者预防自我伤害和自杀的准备程度和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb67/9723576/b1a3ec04517d/43856_2022_222_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验