Suppr超能文献

基于机器学习的肺部肿瘤内外呼吸运动相关性预测放射组学模型

Machine Learning Radiomics Model for External and Internal Respiratory Motion Correlation Prediction in Lung Tumor.

机构信息

Radiotherapy Physics and Technology Center, Cancer Center, 34753West China Hospital, Sichuan University, Chengdu, China.

Department of Radiation Oncology, Cancer Center, The 71068First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221143224. doi: 10.1177/15330338221143224.

Abstract

The complexity and specificity of lung tumor motion render it necessary to determine the external and internal correlation individually before applying indirect tumor tracking. However, the correlation cannot be determined from patient respiratory and tumor clinical characteristics before treatment. The purpose of this study is to present a machine learning model for an external/internal correlation prediction that is based on computed tomography (CT) radiomic features. 4-dimensional computed tomography (4DCT) images of 67 patients were collected retrospectively, and the external/internal correlation of lung tumor was calculated based on Spearman's rank correlation coefficient. Radiomic features were extracted from average intensity projection and the light gradient boosting machine (LightGBM)-based cross-validation (the recursive elimination method) was used for feature selection. The LightGBM framework forecasting models with classification thresholds 0.7, 0.8, and 0.9 are established using stratified 5-fold cross-validation. Model performance was assessed using receiver operating characteristics, sensitivity, and specificity. There were 16, 18, and 13 features selected for models 0.7, 0.8, and 0.9, respectively. Texture features are of great importance in external/internal correlation prediction compared to other features in all models. The sensitivities of the predictions in models 0.7, 0.8, and 0.9 were 0.800 ± 0.126, 0.829 ± 0.140, and 0.864 ± 0.086, respectively. The specificities were 0.771 ± 0.114, 0.936 ± 0.0581, and 0.839 ± 0.101, whereas the area under the curve (AUC) was 0.837, 0.946, and 0.877, respectively. Our findings indicate that radiomics is an effective tool for respiratory motion correlation prediction, which can extract tumor motion characteristics. We proposed a machine learning framework for correlation prediction in the motion management strategy for lung tumor patients.

摘要

肺部肿瘤运动的复杂性和特异性使得在应用间接肿瘤跟踪之前,有必要分别确定外部和内部相关性。然而,在治疗前,无法根据患者的呼吸和肿瘤临床特征来确定相关性。本研究旨在提出一种基于计算机断层扫描(CT)放射组学特征的外部/内部相关性预测的机器学习模型。本研究回顾性收集了 67 例患者的 4 维 CT 图像,并根据 Spearman 秩相关系数计算肺部肿瘤的外部/内部相关性。从平均强度投影中提取放射组学特征,并采用基于 LightGBM 的交叉验证(递归消除法)进行特征选择。使用分层 5 折交叉验证建立分类阈值为 0.7、0.8 和 0.9 的 LightGBM 框架预测模型。使用受试者工作特征、灵敏度和特异性评估模型性能。模型 0.7、0.8 和 0.9 分别选择了 16、18 和 13 个特征。与所有模型中的其他特征相比,纹理特征在外部/内部相关性预测中非常重要。在模型 0.7、0.8 和 0.9 中,预测的灵敏度分别为 0.800±0.126、0.829±0.140 和 0.864±0.086。特异性分别为 0.771±0.114、0.936±0.0581 和 0.839±0.101,而曲线下面积(AUC)分别为 0.837、0.946 和 0.877。我们的研究结果表明,放射组学是一种有效的呼吸运动相关性预测工具,它可以提取肿瘤运动特征。我们提出了一种用于肺部肿瘤患者运动管理策略中相关性预测的机器学习框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce79/9742719/e659b359ba9e/10.1177_15330338221143224-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验