Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
Plant Physiol. 2023 Feb 12;191(2):1102-1121. doi: 10.1093/plphys/kiac564.
High potassium (K) in the growth medium induces salinity stress in plants. However, the molecular mechanisms underlying plant responses to K-induced salt stress are virtually unknown. We examined Arabidopsis (Arabidopsis thaliana) and its extremophyte relative Schrenkiella parvula using a comparative multiomics approach to identify cellular processes affected by excess K and understand which deterministic regulatory pathways are active to avoid tissue damages while sustaining growth. Arabidopsis showed limited capacity to curb excess K accumulation and prevent nutrient depletion, contrasting to S. parvula which could limit excess K accumulation without restricting nutrient uptake. A targeted transcriptomic response in S. parvula promoted nitrogen uptake along with other key nutrients followed by uninterrupted N assimilation into primary metabolites during excess K-stress. This resulted in larger antioxidant and osmolyte pools and corresponded with sustained growth in S. parvula. Antithetically, Arabidopsis showed increased reactive oxygen species levels, reduced photosynthesis, and transcriptional responses indicative of a poor balance between stress signaling, subsequently leading to growth limitations. Our results indicate that the ability to regulate independent nutrient uptake and a coordinated transcriptomic response to avoid nonspecific stress signaling are two main deterministic steps toward building stress resilience to excess K+-induced salt stress.
高钾(K)在生长培养基中会诱导植物盐胁迫。然而,植物对 K 诱导盐胁迫的反应的分子机制实际上是未知的。我们使用比较多组学方法研究了拟南芥(Arabidopsis thaliana)及其极端微生物近亲 Schrenkiella parvula,以鉴定受过量 K 影响的细胞过程,并了解哪些确定性调控途径是活跃的,以避免组织损伤同时维持生长。拟南芥显示出有限的能力来抑制过量 K 的积累和防止养分枯竭,而 Schrenkiella parvula 则可以限制过量 K 的积累而不限制养分吸收。Schrenkiella parvula 的靶向转录组响应促进了氮吸收以及其他关键养分的吸收,随后在过量 K 胁迫下将氮不间断地同化到初级代谢物中。这导致了更大的抗氧化剂和渗透剂库的形成,并与 Schrenkiella parvula 的持续生长相对应。相反,拟南芥表现出活性氧水平升高、光合作用减少和转录响应表明应激信号之间的平衡不佳,随后导致生长受限。我们的结果表明,调节独立的养分吸收和协调的转录组响应以避免非特异性应激信号的能力是构建对过量 K+诱导的盐胁迫的应激弹性的两个主要决定性步骤。