Suppr超能文献

模块化球体的生物制造作为用于药物筛选的肿瘤规模微环境。

Biofabrication of Modular Spheroids as Tumor-Scale Microenvironments for Drug Screening.

机构信息

Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, Canterbury, 8011, New Zealand.

Department of Obstetrics and Gynaecology, Gynaecological Cancer Research Group, University of Otago, Christchurch, Canterbury, 8011, New Zealand.

出版信息

Adv Healthc Mater. 2023 Jun;12(14):e2201581. doi: 10.1002/adhm.202201581. Epub 2022 Dec 25.

Abstract

To streamline the drug discovery pipeline, there is a pressing need for preclinical models which replicate the complexity and scale of native tumors. While there have been advancements in the formation of microscale tumor units, these models are cell-line dependent, time-consuming and have not improved clinical trial success rates. In this study, two methods for generating 3D tumor microenvironments are compared, rapidly fabricated hydrogel microspheres and traditional cell-dense spheroids. These modules are then bioassembled into 3D printed thermoplastic scaffolds, using an automated biofabrication process, to form tumor-scale models. Modules are formed with SKOV3 and HFF cells as monocultures and cocultures, and the fabrication efficiency, cell architecture, and drug response profiles are characterized, both as single modules and as multimodular constructs. Cell-encapsulated Gel-MA microspheres are fabricated with high-reproducibility and dimensions necessary for automated tumor-scale bioassembly regardless of cell type, however, only cocultured spheroids form compact modules suitable for bioassembly. Chemosensitivity assays demonstrate the reduced potency of doxorubicin in coculture bioassembled constructs and a ≈five-fold increase in drug resistance of cocultured cells in 3D modules compared with 2D monolayers. This bioassembly system is efficient and tailorable so that a variety of relevant-sized tumor constructs could be developed to study tumorigenesis and modernize drug discovery.

摘要

为了简化药物发现的流程,我们迫切需要能够模拟天然肿瘤复杂性和规模的临床前模型。虽然在微尺度肿瘤单元的形成方面已经取得了进展,但这些模型依赖于细胞系,耗时且并未提高临床试验的成功率。在本研究中,我们比较了两种生成 3D 肿瘤微环境的方法,即快速制造水凝胶微球和传统的细胞密集球体。然后,使用自动化生物制造工艺,将这些模块组装到 3D 打印热塑性支架中,形成肿瘤规模的模型。模块由 SKOV3 和 HFF 细胞作为单培养物和共培养物形成,并对其制造效率、细胞结构和药物反应谱进行了表征,无论是作为单个模块还是多模块构建体。无论细胞类型如何,细胞包封的 Gel-MA 微球都具有高重现性和制造所需的尺寸,可用于自动化肿瘤规模的生物组装,但只有共培养的球体才能形成适合生物组装的紧凑模块。化学敏感性测定表明,与 2D 单层相比,共培养生物组装构建体中阿霉素的效力降低,并且在 3D 模块中共培养细胞的耐药性增加了约五倍。该生物组装系统高效且可定制,因此可以开发出各种相关尺寸的肿瘤构建体,以研究肿瘤发生和使药物发现现代化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/723c/11468982/66946d3e9259/ADHM-12-2201581-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验