文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

两种结构不同的柠檬果胶对肠道微生物群结构和功能的调节作用。

Modulation of the Gut Microbiota Structure and Function by Two Structurally Different Lemon Pectins.

作者信息

Firrman Jenni, Mahalak Karley, Bobokalonov Jamshed, Liu LinShu, Lee Jung-Jin, Bittinger Kyle, Mattei Lisa M, Gadaingan Rizalina, Narrowe Adrienne B, Lemons Johanna M S

机构信息

United States Department of Agriculture, Agriculture Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19462, USA.

Children's Hospital of Philadelphia, Division of Gastroenterology, Hepatology, and Nutrition, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA.

出版信息

Foods. 2022 Dec 1;11(23):3877. doi: 10.3390/foods11233877.


DOI:10.3390/foods11233877
PMID:36496685
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9739951/
Abstract

Pectins are plant polysaccharides consumed as part of a diet containing fruits and vegetables. Inside the gastrointestinal tract, pectin cannot be metabolized by the mammalian cells but is fermented by the gut microbiota in the colon with the subsequent release of end products including short-chain fatty acids (SCFA). The prebiotic effects of pectin have been previously evaluated but reports are inconsistent, most likely due to differences in the pectin chemical structure which can vary by molecular weight (MW) and degree of esterification (DE). Here, the effects of two different MW lemon pectins with varying DEs on the gut microbiota of two donors were evaluated in vitro. The results demonstrated that low MW, high DE lemon pectin (LMW-HDE) altered community structure in a donor-dependent manner, whereas high MW, low DE lemon pectin (HMW-LDE) increased taxa within in both donors. LMW-HDE and HMW-LDE lemon pectins both increased total SCFAs (1.49- and 1.46-fold, respectively) and increased acetic acid by 1.64-fold. Additionally, LMW-HDE lemon pectin led to an average 1.41-fold increase in butanoic acid. Together, these data provide valuable information linking chemical structure of pectin to its effect on the gut microbiota structure and function, which is important to understanding its prebiotic potential.

摘要

果胶是一种植物多糖,作为包含水果和蔬菜的饮食的一部分被摄入。在胃肠道内,果胶不能被哺乳动物细胞代谢,但会在结肠中被肠道微生物群发酵,随后释放包括短链脂肪酸(SCFA)在内的终产物。果胶的益生元作用此前已被评估,但报告结果并不一致,这很可能是由于果胶化学结构的差异,其可因分子量(MW)和酯化度(DE)而有所不同。在此,体外评估了两种不同分子量且酯化度各异的柠檬果胶对两名供体肠道微生物群的影响。结果表明,低分子量、高酯化度的柠檬果胶(LMW-HDE)以供体依赖的方式改变群落结构,而高分子量、低酯化度的柠檬果胶(HMW-LDE)在两名供体中均增加了特定分类群。LMW-HDE和HMW-LDE柠檬果胶均增加了总短链脂肪酸(分别增加1.49倍和1.46倍),并使乙酸增加了1.64倍。此外,LMW-HDE柠檬果胶使丁酸平均增加了1.41倍。总之,这些数据提供了有价值的信息,将果胶的化学结构与其对肠道微生物群结构和功能的影响联系起来,这对于理解其益生元潜力很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/8aa852f76d4e/foods-11-03877-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/8a24add1473e/foods-11-03877-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/0e4253eebbc0/foods-11-03877-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/530352c58152/foods-11-03877-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/914a83459731/foods-11-03877-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/bbb80c7fed4a/foods-11-03877-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/8aa852f76d4e/foods-11-03877-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/8a24add1473e/foods-11-03877-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/0e4253eebbc0/foods-11-03877-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/530352c58152/foods-11-03877-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/914a83459731/foods-11-03877-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/bbb80c7fed4a/foods-11-03877-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aa6/9739951/8aa852f76d4e/foods-11-03877-g006.jpg

相似文献

[1]
Modulation of the Gut Microbiota Structure and Function by Two Structurally Different Lemon Pectins.

Foods. 2022-12-1

[2]
Depolymerized RG-I-enriched pectin from citrus segment membranes modulates gut microbiota, increases SCFA production, and promotes the growth of Bifidobacterium spp., Lactobacillus spp. and Faecalibaculum spp.

Food Funct. 2019-12-11

[3]
In vitro modulation of human gut microbiota composition and metabolites by Bifidobacterium longum BB-46 and a citric pectin.

Food Res Int. 2018-11-9

[4]
Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats.

Mol Nutr Food Res. 2016-10

[5]
Age-related effects on the modulation of gut microbiota by pectins and their derivatives: an study.

Front Microbiol. 2023-7-5

[6]
Effects of pectin methyl-esterification on intestinal microbiota and its immunomodulatory properties in naive mice.

Carbohydr Polym. 2024-6-15

[7]
Pineapple and banana pectins comprise fewer homogalacturonan building blocks with a smaller degree of polymerization as compared with yellow passion fruit and lemon pectins: implication for gelling properties.

Biomacromolecules. 2009-4-13

[8]
Potential of Pectins to Beneficially Modulate the Gut Microbiota Depends on Their Structural Properties.

Front Microbiol. 2019-2-15

[9]
Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions.

Carbohydr Polym. 2021-3-1

[10]
Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via in vitro gut fermentation.

Carbohydr Polym. 2021-10-1

引用本文的文献

[1]
Exploring the Prebiotic Potentials of Hydrolyzed Pectins: Mechanisms of Action and Gut Microbiota Modulation.

Nutrients. 2024-10-29

[2]
Hawthorn pectin plays a protective role in myocardial ischaemia by regulating intestinal flora and short chain fatty acids.

Curr Res Food Sci. 2024-9-20

[3]
Preservation of conjugated primary bile acids by oxygenation of the small intestinal microbiota .

mBio. 2024-6-12

[4]
Strain GG (LGG) Regulate Gut Microbial Metabolites, an In Vitro Study Using Three Mature Human Gut Microbial Cultures in a Simulator of Human Intestinal Microbial Ecosystem (SHIME).

Foods. 2023-5-24

[5]
The lipid-lowering effects of fenugreek gum, hawthorn pectin, and burdock inulin.

Front Nutr. 2023-3-23

本文引用的文献

[1]
The Potential of Pectins to Modulate the Human Gut Microbiota Evaluated by In Vitro Fermentation: A Systematic Review.

Nutrients. 2022-9-2

[2]
Pectic polysaccharides: Targeting gut microbiota in obesity and intestinal health.

Carbohydr Polym. 2022-7-1

[3]
The impact of environmental pH on the gut microbiota community structure and short chain fatty acid production.

FEMS Microbiol Ecol. 2022-5-14

[4]
Analysis of the Ability of Capsaicin to Modulate the Human Gut Microbiota In Vitro.

Nutrients. 2022-3-18

[5]
Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: A review.

Carbohydr Polym. 2022-2-15

[6]
A Pectin-Rich, Baobab Fruit Pulp Powder Exerts Prebiotic Potential on the Human Gut Microbiome In Vitro.

Microorganisms. 2021-9-17

[7]
The Dietary Fiber Pectin: Health Benefits and Potential for the Treatment of Allergies by Modulation of Gut Microbiota.

Curr Allergy Asthma Rep. 2021-9-10

[8]
Challenges of pectic polysaccharides as a prebiotic from the perspective of fermentation characteristics and anti-colitis activity.

Carbohydr Polym. 2021-10-15

[9]
Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via in vitro gut fermentation.

Carbohydr Polym. 2021-10-1

[10]
Prebiotic effects of citrus pectic oligosaccharides.

Nat Prod Res. 2022-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索