Suppr超能文献

肿瘤机械应力促进癌症免疫逃逸?

Do Tumor Mechanical Stresses Promote Cancer Immune Escape?

机构信息

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Cells. 2022 Nov 30;11(23):3840. doi: 10.3390/cells11233840.

Abstract

Immune evasion-a well-established cancer hallmark-is a major barrier to immunotherapy efficacy. While the molecular mechanisms and biological consequences underpinning immune evasion are largely known, the role of tissue mechanical stresses in these processes warrants further investigation. The tumor microenvironment (TME) features physical abnormalities (notably, increased fluid and solid pressures applied both inside and outside the TME) that drive cancer mechanopathologies. Strikingly, in response to these mechanical stresses, cancer cells upregulate canonical immune evasion mechanisms, including epithelial-mesenchymal transition (EMT) and autophagy. Consideration and characterization of the origins and consequences of tumor mechanical stresses in the TME may yield novel strategies to combat immunotherapy resistance. In this Perspective, we posit that tumor mechanical stresses-namely fluid shear and solid stresses-induce immune evasion by upregulating EMT and autophagy. In addition to exploring the basis for our hypothesis, we also identify explicit gaps in the field that need to be addressed in order to directly demonstrate the existence and importance of this biophysical relationship. Finally, we propose that reducing or neutralizing fluid shear stress and solid stress-induced cancer immune escape may improve immunotherapy outcomes.

摘要

免疫逃避——一个已被充分证实的癌症特征——是免疫疗法疗效的主要障碍。虽然免疫逃避的分子机制和生物学后果在很大程度上是已知的,但组织力学应激在这些过程中的作用值得进一步研究。肿瘤微环境(TME)具有物理异常(值得注意的是,TME 内外的流体和固体压力增加),这些异常导致了癌症的力学病理学。引人注目的是,为了应对这些力学应激,癌细胞上调了经典的免疫逃避机制,包括上皮-间充质转化(EMT)和自噬。考虑和描述 TME 中肿瘤力学应激的起源和后果可能会产生新的策略来对抗免疫疗法的耐药性。在本观点中,我们假设肿瘤力学应激——即流体剪切力和固体应力——通过上调 EMT 和自噬来诱导免疫逃避。除了探索我们假设的基础外,我们还确定了该领域需要解决的明确差距,以便直接证明这种生物物理关系的存在和重要性。最后,我们提出减少或中和流体剪切力和固体应力诱导的癌症免疫逃逸可能会改善免疫疗法的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f6f/9740277/8a8f9497aac0/cells-11-03840-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验