Suppr超能文献

利用机器学习技术在冠状动脉造影前预测慢性完全闭塞病变。

Leveraging Machine Learning Techniques to Forecast Chronic Total Occlusion before Coronary Angiography.

作者信息

Shi Yuchen, Zheng Ze, Liu Yanci, Wu Yongxin, Wang Ping, Liu Jinghua

机构信息

Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, 2 Anzhen Road, Chaoyang District, Beijing 100029, China.

Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China.

出版信息

J Clin Med. 2022 Nov 26;11(23):6993. doi: 10.3390/jcm11236993.

Abstract

BACKGROUND

Chronic total occlusion (CTO) remains the most challenging procedure in coronary artery disease (CAD) for interventional cardiology. Although some clinical risk factors for CAD have been identified, there is no personalized prognosis test available to confidently identify patients at high or low risk for CTO CAD. This investigation aimed to use a machine learning algorithm for clinical features from clinical routine to develop a precision medicine tool to predict CTO before CAG.

METHODS

Data from 1473 CAD patients were obtained, including 1105 in the training cohort and 368 in the testing cohort. The baseline clinical characteristics were collected. Univariate and multivariate logistic regression analyses were conducted to identify independent risk factors that impact the diagnosis of CTO. A CTO predicting model was established and validated based on the independent predictors using a machine learning algorithm. The area under the curve (AUC) was used to evaluate the model.

RESULTS

The CTO prediction model was developed with the training cohort using the machine learning algorithm. Eight variables were confirmed as 'important': gender (male), neutrophil percentage (NE%), hematocrit (HCT), total cholesterol (TC), high-density lipoprotein cholesterol (HDL), ejection fraction (EF), troponin I (TnI), and N-terminal pro-B-type natriuretic peptide (NT-proBNP). The model achieved good concordance indices of 0.724 and 0.719 in the training and testing cohorts, respectively.

CONCLUSIONS

An easy-to-use tool to predict CTO in patients with CAD was developed and validated. More research with larger cohorts are warranted to improve the prediction model, which can support clinician decisions on the early discerning CTO in CAD patients.

摘要

背景

慢性完全闭塞病变(CTO)仍然是冠状动脉疾病(CAD)介入心脏病学中最具挑战性的手术。尽管已经确定了一些CAD的临床危险因素,但尚无个性化的预后测试可用于可靠地识别CTO CAD高风险或低风险患者。本研究旨在使用机器学习算法分析临床常规中的临床特征,以开发一种精准医学工具,在冠状动脉造影(CAG)之前预测CTO。

方法

获取了1473例CAD患者的数据,其中训练队列1105例,测试队列368例。收集了基线临床特征。进行单因素和多因素逻辑回归分析,以确定影响CTO诊断的独立危险因素。基于独立预测因素,使用机器学习算法建立并验证了CTO预测模型。采用曲线下面积(AUC)评估该模型。

结果

使用机器学习算法在训练队列中建立了CTO预测模型。八个变量被确认为“重要”变量:性别(男性)、中性粒细胞百分比(NE%)、血细胞比容(HCT)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL)、射血分数(EF)、肌钙蛋白I(TnI)和N末端B型利钠肽原(NT-proBNP)。该模型在训练队列和测试队列中的一致性指数分别为0.724和0.719。

结论

开发并验证了一种易于使用的工具,用于预测CAD患者的CTO。需要进行更多更大队列的研究来改进预测模型,以支持临床医生对CAD患者早期识别CTO的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a562/9739483/b3e117c8bb33/jcm-11-06993-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验