Suppr超能文献

一种基于套索算法得出的、用于在冠状动脉造影术前对亚洲人群慢性完全闭塞进行风险评估模型的开发与验证

A LASSO-derived developing and validating risk model for chronic total occlusion in Asian population before coronary angiography.

作者信息

Shi Yuchen, Zheng Ze, Wang Ping, Wu Yongxin, Cheng Zichao, Jian Wen, Liu Yanci, Liu Jinghua

机构信息

Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.

Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China.

出版信息

Cardiovasc Diagn Ther. 2023 Jun 30;13(3):496-508. doi: 10.21037/cdt-22-466. Epub 2023 May 10.

Abstract

BACKGROUND

Despite several previous studies that have explored the predictors of high morbidity in coronary artery disease (CAD) and developed nomograms for CAD patients prior to coronary angiography (CAG), there is a lack of models available to predict chronic total occlusion (CTO). The aim of this study is to develop a risk model and a nomogram for predicting the probability of CTO prior to CAG.

METHODS

The study included 1,105 patients with CAG-diagnosed CTO in the derivation cohort and 368 patients in the validation cohort. Clinical demographics, echocardiography results, and laboratory indexes were analyzed using statistical difference tests. Independent risk factors affecting the CTO indication were selected using least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis. A nomogram was built and validated based on these independent indicators. The performance of the nomogram was evaluated using area under the curve (AUC), calibration curve, and decision curve analysis (DCA).

RESULTS

LASSO and multivariate logistic regression analysis revealed that 6 variables, including sex (male), lymphocyte percentage (LYM%), ejection fraction (EF), myoglobin (Mb), non-high-density lipoprotein cholesterol (non-HDL), and N-terminal pro-B-type natriuretic peptide (NT-proBNP), were independent predictors of CTO. The nomogram constructed based on these variables showed good discrimination (C index of 0.744) and external validation (C index of 0.729). The calibration curves and DCA demonstrated high reliability and precision for this clinical prediction model.

CONCLUSIONS

The nomogram based on sex (male), LYM%, EF, Mb, non-HDL, and NT-proBNP could be used to predict CTO in CAD patients, enhancing the ability to predict their prognosis in clinical practice. Further research is needed to validate the efficacy of the nomogram in other populations.

摘要

背景

尽管先前有多项研究探讨了冠状动脉疾病(CAD)高发病率的预测因素,并在冠状动脉造影(CAG)之前为CAD患者开发了列线图,但目前缺乏可用于预测慢性完全闭塞(CTO)的模型。本研究的目的是开发一种风险模型和列线图,以预测CAG之前CTO的可能性。

方法

本研究纳入了1105例在推导队列中经CAG诊断为CTO的患者和368例在验证队列中的患者。使用统计差异检验分析临床人口统计学、超声心动图结果和实验室指标。使用最小绝对收缩和选择算子(LASSO)和多变量逻辑回归分析选择影响CTO指征的独立危险因素。基于这些独立指标构建并验证列线图。使用曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)评估列线图的性能。

结果

LASSO和多变量逻辑回归分析显示,6个变量,包括性别(男性)、淋巴细胞百分比(LYM%)、射血分数(EF)、肌红蛋白(Mb)、非高密度脂蛋白胆固醇(非HDL)和N末端B型脑钠肽原(NT-proBNP),是CTO的独立预测因素。基于这些变量构建的列线图显示出良好的辨别力(C指数为0.744)和外部验证(C指数为0.729)。校准曲线和DCA证明了该临床预测模型的高可靠性和准确性。

结论

基于性别(男性)、LYM%、EF、Mb、非HDL和NT-proBNP的列线图可用于预测CAD患者的CTO,提高临床实践中预测其预后的能力。需要进一步研究以验证列线图在其他人群中的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3723/10315427/59da6b8685f8/cdt-13-03-496-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验