Suppr超能文献

利用基因组变异区分卵巢高级别浆液性癌与良性输卵管。

Using Genomic Variation to Distinguish Ovarian High-Grade Serous Carcinoma from Benign Fallopian Tubes.

机构信息

Department of Obstetrics and Gynecology, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, USA.

Hanjani Institute of Gynecologic Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA.

出版信息

Int J Mol Sci. 2022 Nov 26;23(23):14814. doi: 10.3390/ijms232314814.

Abstract

UNLABELLED

The preoperative diagnosis of pelvic masses has been elusive to date. Methods for characterization such as CA-125 have had limited specificity. We hypothesize that genomic variation can be used to create prediction models which accurately distinguish high grade serous ovarian cancer (HGSC) from benign tissue.

METHODS

In this retrospective, pilot study, we extracted DNA and RNA from HGSC specimens and from benign fallopian tubes. Then, we performed whole exome sequencing and RNA sequencing, and identified single nucleotide variants (SNV), copy number variants (CNV) and structural variants (SV). We used these variants to create prediction models to distinguish cancer from benign tissue. The models were then validated in independent datasets and with a machine learning platform.

RESULTS

The prediction model with SNV had an AUC of 1.00 (95% CI 1.00-1.00). The models with CNV and SV had AUC of 0.87 and 0.73, respectively. Validated models also had excellent performances.

CONCLUSIONS

Genomic variation of HGSC can be used to create prediction models which accurately discriminate cancer from benign tissue. Further refining of these models (early-stage samples, other tumor types) has the potential to lead to detection of ovarian cancer in blood with cell free DNA, even in early stage.

摘要

未标记

迄今为止,盆腔肿块的术前诊断一直难以捉摸。诸如 CA-125 等特征方法的特异性有限。我们假设基因组变异可用于创建预测模型,该模型可准确区分高级别浆液性卵巢癌(HGSC)与良性组织。

方法

在这项回顾性的初步研究中,我们从 HGSC 标本和良性输卵管中提取了 DNA 和 RNA。然后,我们进行了全外显子组测序和 RNA 测序,并鉴定了单核苷酸变异(SNV)、拷贝数变异(CNV)和结构变异(SV)。我们使用这些变体创建了预测模型,以区分癌症与良性组织。然后,使用机器学习平台在独立数据集和验证模型中进行了验证。

结果

具有 SNV 的预测模型的 AUC 为 1.00(95%CI 1.00-1.00)。具有 CNV 和 SV 的模型的 AUC 分别为 0.87 和 0.73。验证后的模型也具有出色的性能。

结论

HGSC 的基因组变异可用于创建预测模型,该模型可准确区分癌症与良性组织。进一步完善这些模型(早期样本、其他肿瘤类型)有可能导致使用游离 DNA 在血液中检测到卵巢癌,即使是在早期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/785c/9738935/49ced66ae4b0/ijms-23-14814-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验