Sánchez-García Laura, Ramírez Mariola O, Solé Rosa Maria, Carvajal Joan J, Díaz Francesc, Bausá Luisa E
1Deparment Física de Materiales, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Universitat Rovira i Virgili, Departament Química Física i Inorgànica, Fisica i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA) - EMaS, E-43007 Tarragona, Spain.
Light Sci Appl. 2019 Jan 30;8:14. doi: 10.1038/s41377-019-0125-2. eCollection 2019.
Expanding the functionalities of plasmon-assisted lasers is essential for emergent applications in nanoscience and nanotechnology. Here, we report on a novel ability of plasmonic structures to induce dual-wavelength lasing in the near-infrared region in a Yb solid-state laser. By means of the effects of disordered plasmonic networks deposited on the surface of a Yb-doped nonlinear RTP crystal, room-temperature dual-wavelength lasing, with a frequency difference between the lines in the THz range, is realized. The dual-wavelength laser is produced by the simultaneous activation of two lasing channels, namely, an electronic- and a phonon-terminated laser transition. The latter is enabled by the out-of-plane field components that are generated by the plasmonic structures, which excite specific Raman modes. Additionally, multiline radiation at three different wavelengths is demonstrated in the visible spectral region via two self-frequency conversion processes, which occur in the vicinities of the plasmonic structures. The results demonstrate the potential of plasmonic nanostructures for inducing drastic modifications in the operational mode of a solid-state laser and hold promise for applications in a variety of fields, including multiplexing, precise spectroscopies, and THz radiation generation via a simple and cost-effective procedure.
扩展等离子体辅助激光器的功能对于纳米科学和纳米技术中的新兴应用至关重要。在此,我们报道了等离子体结构在掺镱固态激光器中诱导近红外区域双波长激光发射的新能力。通过沉积在掺镱非线性RTP晶体表面的无序等离子体网络的作用,实现了室温双波长激光发射,谱线之间的频率差在太赫兹范围内。双波长激光是由两个激光通道同时激活产生的,即电子终止和声子终止的激光跃迁。后者是由等离子体结构产生的面外场分量实现的,该分量激发特定的拉曼模式。此外,通过在等离子体结构附近发生的两个自频率转换过程,在可见光谱区域展示了三种不同波长的多线辐射。结果证明了等离子体纳米结构在固态激光器工作模式中诱导剧烈变化的潜力,并有望通过简单且经济高效的程序应用于包括复用、精密光谱学和太赫兹辐射产生在内的各种领域。