Suppr超能文献

基于视频异常行为的无人机综合检测模型(CUDM)

CUDM: A Combined UAV Detection Model Based on Video Abnormal Behavior.

机构信息

Department of Computer Science, Shantou University, Shantou 515041, China.

出版信息

Sensors (Basel). 2022 Dec 4;22(23):9469. doi: 10.3390/s22239469.

Abstract

The widespread use of unmanned aerial vehicles (UAVs) has brought many benefits, particularly for military and civil applications. For example, UAVs can be used in communication, ecological surveys, agriculture, and logistics to improve efficiency and reduce the required workforce. However, the malicious use of UAVs can significantly endanger public safety and pose many challenges to society. Therefore, detecting malicious UAVs is an important and urgent issue that needs to be addressed. In this study, a combined UAV detection model (CUDM) based on analyzing video abnormal behavior is proposed. CUDM uses abnormal behavior detection models to improve the traditional object detection process. The work of CUDM can be divided into two stages. In the first stage, our model cuts the video into images and uses the abnormal behavior detection model to remove a large number of useless images, improving the efficiency and real-time detection of suspicious targets. In the second stage, CUDM works to identify whether the suspicious target is a UAV or not. Besides, CUDM relies only on ordinary equipment such as surveillance cameras, avoiding the use of expensive equipment such as radars. A self-made UAV dataset was constructed to verify the reliability of CUDM. The results show that CUDM not only maintains the same accuracy as state-of-the-art object detection models but also reduces the workload by 32%. Moreover, it can detect malicious UAVs in real-time.

摘要

无人机(UAV)的广泛应用带来了许多好处,特别是在军事和民用领域。例如,无人机可用于通信、生态调查、农业和物流等领域,以提高效率并减少所需的劳动力。然而,无人机的恶意使用会严重危及公共安全,给社会带来许多挑战。因此,检测恶意无人机是一个重要且紧迫的问题,需要加以解决。在这项研究中,提出了一种基于分析视频异常行为的组合无人机检测模型(CUDM)。CUDM 使用异常行为检测模型来改进传统的目标检测过程。CUDM 的工作可以分为两个阶段。在第一阶段,我们的模型将视频切割成图像,并使用异常行为检测模型去除大量无用的图像,从而提高可疑目标的效率和实时检测能力。在第二阶段,CUDM 致力于识别可疑目标是否为无人机。此外,CUDM 仅依赖于监控摄像机等普通设备,避免使用昂贵的雷达等设备。我们构建了一个自制的无人机数据集来验证 CUDM 的可靠性。结果表明,CUDM 不仅保持了与最先进的目标检测模型相同的准确性,而且还减少了 32%的工作量。此外,它还可以实时检测恶意无人机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7e/9735723/aadcfa5b932e/sensors-22-09469-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验