Department of Physics, Oregon State University, Corvallis, OR, USA.
Department of Physics, Arizona State University, Tempe, AZ, USA.
Soft Matter. 2022 Dec 21;19(1):9-16. doi: 10.1039/d2sm01100j.
Altered tissue mechanics is an important signature of invasive solid tumors. While the phenomena have been extensively studied by measuring the bulk rheology of the extracellular matrix (ECM) surrounding tumors, micromechanical remodeling at the cellular scale remains poorly understood. By combining holographic optical tweezers and confocal microscopy on tumor models, we show that the micromechanics of collagen ECM surrounding an invading tumor demonstrate directional anisotropy, spatial heterogeneity and significant variations in time as tumors invade. To test the cellular mechanisms of ECM micromechanical remodeling, we construct a simple computational model and verify its predictions with experiments. We find that collective force generation of a tumor stiffens the ECM and leads to anisotropic local mechanics such that the extension direction is more rigid than the compression direction. ECM degradation by cell-secreted matrix metalloproteinase softens the ECM, and active traction forces from individual disseminated cells re-stiffen the matrix. Together, these results identify plausible biophysical mechanisms responsible for the remodeled ECM micromechanics surrounding an invading tumor.
组织力学改变是侵袭性实体瘤的一个重要特征。虽然已经通过测量肿瘤周围细胞外基质(ECM)的整体流变学来广泛研究这些现象,但细胞尺度上的微观机械重塑仍知之甚少。通过在肿瘤模型上结合全息光镊和共聚焦显微镜,我们表明,在肿瘤侵袭过程中,围绕侵袭性肿瘤的胶原 ECM 的微观力学表现出方向性各向异性、空间异质性和显著的时变。为了测试 ECM 微观机械重塑的细胞机制,我们构建了一个简单的计算模型,并通过实验验证了其预测。我们发现,肿瘤的集体力生成使 ECM 变硬,并导致各向异性的局部力学,使得伸展方向比压缩方向更硬。细胞分泌的基质金属蛋白酶降解 ECM,而单个弥散细胞的主动牵引力使基质再次变硬。总之,这些结果确定了与侵袭性肿瘤周围重塑 ECM 微观力学相关的合理生物物理机制。