Suppr超能文献

二维潜在空间中高维细胞形态和形态动力学的表示。

Representation of high-dimensional cell morphology and morphodynamics in 2D latent space.

作者信息

Cunningham Christian, Sun Bo

机构信息

Department of Physics, Oregon State University, Corvallis, OR 97331, United States of America.

出版信息

Phys Biol. 2025 Apr 24;22(3). doi: 10.1088/1478-3975/adcd37.

Abstract

The morphology and morphodynamics of cells as important biomarkers of the cellular state are widely appreciated in both fundamental research and clinical applications. Quantification of cell morphology often requires a large number of geometric measures that form a high-dimensional feature vector. This mathematical representation creates barriers to communicating, interpreting, and visualizing data. Here, we develop a deep learning-based algorithm to project 13-dimensional (13D) morphological feature vectors into 2-dimensional (2D) morphological latent space (MLS). We show that the projection has less than 5% information loss and separates the different migration phenotypes of metastatic breast cancer cells. Using the projection, we demonstrate the phenotype-dependent motility of breast cancer cells in the 3D extracellular matrix, and the continuous cell state change upon drug treatment. We also find that dynamics in the 2D MLS quantitatively agrees with the morphodynamics of cells in the 13D feature space, preserving the diffusive power and the Lyapunov exponent of cell shape fluctuations even though the dimensional reduction projection is highly nonlinear. Our results suggest that MLS is a powerful tool to represent and understand the cell morphology and morphodynamics.

摘要

细胞的形态学和形态动力学作为细胞状态的重要生物标志物,在基础研究和临床应用中都得到了广泛认可。细胞形态的量化通常需要大量形成高维特征向量的几何测量值。这种数学表示给数据的交流、解释和可视化带来了障碍。在此,我们开发了一种基于深度学习的算法,将13维(13D)形态特征向量投影到二维(2D)形态潜在空间(MLS)中。我们表明,这种投影的信息损失小于5%,并能区分转移性乳腺癌细胞的不同迁移表型。利用该投影,我们展示了乳腺癌细胞在三维细胞外基质中的表型依赖性运动性,以及药物处理后细胞状态的持续变化。我们还发现,二维MLS中的动力学与13D特征空间中细胞的形态动力学在数量上是一致的,即使降维投影是高度非线性的,也能保留细胞形状波动的扩散能力和李雅普诺夫指数。我们的结果表明,MLS是一种表征和理解细胞形态及形态动力学的强大工具。

相似文献

1
Representation of high-dimensional cell morphology and morphodynamics in 2D latent space.
Phys Biol. 2025 Apr 24;22(3). doi: 10.1088/1478-3975/adcd37.
2
Morphodynamics facilitate cancer cells to navigate 3D extracellular matrix.
Sci Rep. 2021 Oct 14;11(1):20434. doi: 10.1038/s41598-021-99902-9.
3
Comparative mapping of crawling-cell morphodynamics in deep learning-based feature space.
PLoS Comput Biol. 2021 Aug 12;17(8):e1009237. doi: 10.1371/journal.pcbi.1009237. eCollection 2021 Aug.
4
Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning.
PLoS One. 2021 Nov 17;16(11):e0259462. doi: 10.1371/journal.pone.0259462. eCollection 2021.
8
Lack of telopeptides in fibrillar collagen I promotes the invasion of a metastatic breast tumor cell line.
Cancer Res. 2005 Jul 1;65(13):5674-82. doi: 10.1158/0008-5472.CAN-04-1682.
9
Emerging machine learning approaches to phenotyping cellular motility and morphodynamics.
Phys Biol. 2021 Jun 17;18(4). doi: 10.1088/1478-3975/abffbe.
10
T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration.
J R Soc Interface. 2022 May;19(190):20220081. doi: 10.1098/rsif.2022.0081. Epub 2022 May 11.

本文引用的文献

2
Visual interpretability of bioimaging deep learning models.
Nat Methods. 2024 Aug;21(8):1394-1397. doi: 10.1038/s41592-024-02322-6.
3
Morphological profiling for drug discovery in the era of deep learning.
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae284.
4
Facilitating cell segmentation with the projection-enhancement network.
Phys Biol. 2023 Oct 9;20(6). doi: 10.1088/1478-3975/acfe53.
6
Optimizing the Cell Painting assay for image-based profiling.
Nat Protoc. 2023 Jul;18(7):1981-2013. doi: 10.1038/s41596-023-00840-9. Epub 2023 Jun 21.
9
Systematically quantifying morphological features reveals constraints on organoid phenotypes.
Cell Syst. 2022 Jul 20;13(7):547-560.e3. doi: 10.1016/j.cels.2022.05.008. Epub 2022 Jun 14.
10
A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations.
J Anim Ecol. 2022 Aug;91(8):1567-1581. doi: 10.1111/1365-2656.13754. Epub 2022 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验