Suppr超能文献

基于临床标志物的卵巢肿瘤恶性肿瘤预测列线图模型。

A nomogram model based on clinical markers for predicting malignancy of ovarian tumors.

机构信息

Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.

Department of Obstetrics and Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.

出版信息

Front Endocrinol (Lausanne). 2022 Nov 24;13:963559. doi: 10.3389/fendo.2022.963559. eCollection 2022.

Abstract

OBJECTIVE

The aim of this study was to build a nomogram based on clinical markers for predicting the malignancy of ovarian tumors (OTs).

METHOD

A total of 1,268 patients diagnosed with OTs that were surgically removed between October 2017 and May 2019 were enrolled. Clinical markers such as post-menopausal status, body mass index (BMI), serum human epididymis protein 4 (HE4) value, cancer antigen 125 (CA125) value, Risk of Ovarian Malignancy Algorithm (ROMA) index, course of disease, patient-generated subjective global assessment (PG-SGA) score, ascites, and locations and features of masses were recorded and analyzed ( 0.05). Significant variables were further selected using multivariate logistic regression analysis and were included in the decision curve analysis (DCA) used to assess the value of the nomogram model for predicting OT malignancy.

RESULT

The significant variables included post-menopausal status, BMI, HE4 value, CA125 value, ROMA index, course of disease, PG-SGA score, ascites, and features and locations of masses ( 0.05). The ROMA index, BMI (≥ 26), unclear/blurred mass boundary (on magnetic resonance imaging [MRI]/computed tomography [CT]), mass detection (on MRI/CT), and mass size and features (on type B ultrasound [BUS]) were screened out for multivariate logistic regression analysis to assess the value of the nomogram model for predicting OT malignant risk ( 0.05). The DCA revealed that the net benefit of the nomogram's calculation model was superior to that of the CA125 value, HE4 value, and ROMA index for predicting OT malignancy.

CONCLUSION

We successfully tailored a nomogram model based on selected clinical markers which showed superior prognostic predictive accuracy compared with the use of the CA125, HE4, or ROMA index (that combines both HE and CA125 values) for predicting the malignancy of OT patients.

摘要

目的

本研究旨在构建基于临床标志物的卵巢肿瘤(OT)恶性肿瘤预测列线图。

方法

共纳入 2017 年 10 月至 2019 年 5 月期间手术切除的 1268 例诊断为 OT 的患者。记录并分析了绝经后状态、体质量指数(BMI)、血清人附睾蛋白 4(HE4)值、癌抗原 125(CA125)值、卵巢恶性肿瘤风险算法(ROMA)指数、病程、患者生成的主观整体评估(PG-SGA)评分、腹水以及肿块的位置和特征等临床标志物(P<0.05)。采用多因素逻辑回归分析进一步选择有意义的变量,并纳入决策曲线分析(DCA),以评估列线图模型预测 OT 恶性肿瘤的价值。

结果

绝经后状态、BMI(≥26)、肿块边界不清/模糊(磁共振成像[MRI]/计算机断层扫描[CT])、肿块检出(MRI/CT)、肿块大小和特征(B 型超声[BUS])是有意义的变量(P<0.05)。对 ROMA 指数、BMI(≥26)、MRI/CT 上肿块边界不清/模糊、MRI/CT 上肿块检出、BUS 上肿块大小和特征进行多因素逻辑回归分析,评估列线图模型预测 OT 恶性风险的价值(P<0.05)。DCA 显示,与 CA125 值、HE4 值和 ROMA 指数相比,列线图计算模型的净获益在预测 OT 恶性肿瘤方面更具优势。

结论

我们成功地根据选定的临床标志物构建了列线图模型,与 CA125、HE4 或 ROMA 指数(结合 HE 和 CA125 值)相比,该模型预测 OT 患者恶性肿瘤的预后预测准确性更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8247/9729545/1dece45c1306/fendo-13-963559-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验