Syed Adnan K, Baral Rishika, Van Vlack Erik R, Gil-Marqués María Luisa, Lenhart Taliesin, Hooper David C, Kahne Daniel, Losick Richard, Bradshaw Niels
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138.
Department of Biochemistry, Brandeis University, Waltham, MA 02453.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2417323121. doi: 10.1073/pnas.2417323121. Epub 2024 Dec 16.
The bacterial pathogen forms multicellular communities known as biofilms in which cells are held together by an extracellular matrix principally composed of repurposed cytoplasmic proteins and extracellular DNA. These biofilms assemble during infections or under laboratory conditions by growth on medium containing glucose, but the intracellular signal for biofilm formation and its downstream targets were unknown. Here, we present evidence that biofilm formation is triggered by a drop in the levels of the second messenger cyclic-di-AMP. Previous work identified genes needed for the release of extracellular DNA, including genes for the cyclic-di-AMP phosphodiesterase GdpP, the transcriptional regulator XdrA, and the purine salvage enzyme Apt. Using a cyclic-di-AMP riboswitch biosensor and mass spectrometry, we show that the second messenger drops in abundance during biofilm formation in a glucose-dependent manner. Mutation of these three genes elevates cyclic-di-AMP and prevents biofilm formation in a murine catheter model. Supporting the generality of this mechanism, we found that was required for biofilm formation by diverse strains of . We additionally show that the downstream consequence of the drop in cyclic-di-AMP is inhibition of the "accessory gene regulator" operon , which is known to suppress biofilm formation through phosphorylation of the transcriptional regulator AgrA by the histidine kinase AgrC. Consistent with this, an mutation bypasses the block in biofilm formation and eDNA release caused by a mutation. Finally, we report the unexpected observation that GdpP inhibits phosphotransfer from AgrC to AgrA, revealing a direct connection between the phosphodiesterase and .
这种细菌病原体形成称为生物膜的多细胞群落,其中细胞通过主要由重新利用的细胞质蛋白和细胞外DNA组成的细胞外基质聚集在一起。这些生物膜在感染期间或在实验室条件下,通过在含有葡萄糖的培养基上生长而组装,但生物膜形成的细胞内信号及其下游靶点尚不清楚。在这里,我们提供证据表明,生物膜的形成是由第二信使环二磷酸腺苷(cyclic-di-AMP)水平的下降触发的。先前的研究确定了释放细胞外DNA所需的基因,包括环二磷酸腺苷磷酸二酯酶GdpP、转录调节因子XdrA和嘌呤补救酶Apt的基因。使用环二磷酸腺苷核糖开关生物传感器和质谱分析,我们表明第二信使在生物膜形成过程中以葡萄糖依赖的方式大量下降。这三个基因的突变会提高环二磷酸腺苷水平,并在小鼠导管模型中阻止生物膜形成。为支持这一机制的普遍性,我们发现多种菌株形成生物膜都需要(此处原文缺失关键信息)。我们还表明,环二磷酸腺苷水平下降的下游后果是抑制“辅助基因调节子”操纵子(此处原文缺失关键信息),已知该操纵子通过组氨酸激酶AgrC使转录调节因子AgrA磷酸化来抑制生物膜形成。与此一致的是,(此处原文缺失关键信息)突变绕过了由(此处原文缺失关键信息)突变导致的生物膜形成和细胞外DNA释放的障碍。最后,我们报告了一个意外发现,即GdpP抑制从AgrC到AgrA的磷酸转移,揭示了磷酸二酯酶与(此处原文缺失关键信息)之间的直接联系。