Department of Computer Science and Engineering, SRM Institute of Science and Technology, Bharathi Salai, Ramapuram, Chennai, Tamil Nadu, 600089, India.
Clin Oral Investig. 2024 Oct 28;28(11):614. doi: 10.1007/s00784-024-05977-9.
Periodontics and gingivitis are two of the most widely prevalent illnesses that affect people nowadays. The sixth most common disease in the world is periodontitis, and detecting periodontal bone loss is essential in the earlier condition and is crucial for the development of the proper diagnosis. Early bone loss detection can be assisted by using computer-assisted radiography examination. Understanding disease progression helps to select the most effective treatment action.
An effective deep model is suggested to detect periodontal bone loss at an earlier stage for preventing the progression of Periodontics bone loss.
This work is intimated by collecting images from online resources. Further, the images gathered from the dataset are preceded by the tooth segmentation which is done using DenseUNet + + . Further, the segmented images are given to the Adaptive DenseNet with Gated Recurrent Unit (AD-GRU) for detecting periodontal bone loss and this diagnosis is used for the periodontitis stage, where the ADGRU performance is augmented by optimizing the attributes using the Refined Red Kite Optimization Algorithm (RRKOA).
The offered approach attained an accuracy of 94.45% which is higher than the88.63%, 90.58%, 89.54%, and 92.96% attained by the LSTM, DenseNet, GRU, DenseNet-GRU.
The findings of the simulation proved the designed framework outperformed the traditional model with high accuracy.
The developed effectual deep model-based periodontal bone loss and stage periodontitis diagnosis structure is used in healthcare applications.
牙周病和牙龈炎是当今影响人类健康的两种最常见的疾病。牙周炎是世界上第六种最常见的疾病,在早期发现牙周骨丢失对于这种疾病的诊断至关重要。计算机辅助射线照相检查有助于早期发现牙周骨丢失。了解疾病的进展有助于选择最有效的治疗措施。
提出一种有效的深度模型,以便在早期发现牙周骨丢失,从而预防牙周病骨丢失的进展。
通过从在线资源中收集图像来实现这一点。此外,通过 DenseUNet++进行牙齿分割来预处理从数据集收集的图像。然后,将分割后的图像输入具有门控循环单元 (GRU) 的自适应密集网络 (AD-GRU) 以检测牙周骨丢失,并将该诊断用于牙周炎阶段,其中通过使用改进的红风筝优化算法 (RRKOA) 优化属性来增强 AD-GRU 的性能。
所提出的方法的准确率达到 94.45%,高于 LSTM、DenseNet、GRU 和 DenseNet-GRU 分别达到的 88.63%、90.58%、89.54%和 92.96%。
模拟结果证明,与传统模型相比,所设计的框架具有更高的准确性,表现更好。
开发的基于有效深度模型的牙周骨丢失和牙周炎阶段诊断结构用于医疗保健应用。