Borrowman Sam, Kapuganti Jagadis Gupta, Loake Gary J
Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
Free Radic Biol Med. 2023 Jan;194:357-368. doi: 10.1016/j.freeradbiomed.2022.12.009. Epub 2022 Dec 10.
Following pathogen recognition, plant cells produce a nitrosative burst resulting in a striking increase in nitric oxide (NO), altering the redox state of the cell, which subsequently helps orchestrate a plethora of immune responses. NO is a potent redox cue, efficiently relayed between proteins through its co-valent attachment to highly specific, powerfully reactive protein cysteine (Cys) thiols, resulting in formation of protein S-nitrosothiols (SNOs). This process, known as S-nitrosylation, can modulate the function of target proteins, enabling responsiveness to cellular redox changes. Key targets of S-nitrosylation control the production of reactive oxygen species (ROS), the transcription of immune-response genes, the triggering of the hypersensitive response (HR) and the establishment of systemic acquired resistance (SAR). Here, we bring together recent advances in the control of plant immunity by S-nitrosylation, furthering our appreciation of how changes in cellular redox status reprogramme plant immune function.
在病原体识别之后,植物细胞会产生一氧化氮爆发,导致一氧化氮(NO)显著增加,从而改变细胞的氧化还原状态,随后有助于协调大量的免疫反应。NO是一种强大的氧化还原信号,通过与高度特异性、反应性强的蛋白质半胱氨酸(Cys)硫醇共价结合,在蛋白质之间有效地传递,导致形成蛋白质S-亚硝基硫醇(SNOs)。这个过程,即S-亚硝基化,可以调节靶蛋白的功能,使细胞能够对氧化还原变化作出反应。S-亚硝基化的关键靶点控制活性氧(ROS)的产生、免疫反应基因的转录、过敏反应(HR)的触发以及系统获得性抗性(SAR)的建立。在这里,我们汇集了S-亚硝基化在植物免疫控制方面的最新进展,进一步加深了我们对细胞氧化还原状态变化如何重新编程植物免疫功能的理解。