文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

DNA-enabled fluorescent-based nanosensors monitoring tumor-related RNA toward advanced cancer diagnosis: A review.

作者信息

Dong Fengqi, Yan Weizhen, Dong Wuqi, Shang Xiaofei, Xu Yanli, Liu Wei, Wu Yunkai, Wei Wenmei, Zhao Tingting

机构信息

School of Basic Medical Sciences, Biopharmaceutical Research Institute, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China.

The First School of Clinical Medicine, Anhui Medical University, Hefei, China.

出版信息

Front Bioeng Biotechnol. 2022 Dec 1;10:1059845. doi: 10.3389/fbioe.2022.1059845. eCollection 2022.


DOI:10.3389/fbioe.2022.1059845
PMID:36532593
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9751046/
Abstract

As a burgeoning non-invasive indicator for reproducible cancer diagnosis, tumor-related biomarkers have a wide range of applications in early cancer screening, efficacy monitoring, and prognosis predicting. Accurate and efficient biomarker determination, therefore, is of great importance to prevent cancer progression at an early stage, thus reducing the disease burden on the entire population, and facilitating advanced therapies for cancer. During the last few years, various DNA structure-based fluorescent probes have established a versatile platform for biological measurements, due to their inherent biocompatibility, excellent capacity to recognize nucleic and non-nucleic acid targets, obvious accessibility to synthesis as well as chemical modification, and the ease of interfacing with signal amplification protocols. After decades of research, DNA fluorescent probe technology for detecting tumor-related mRNAs has gradually grown to maturity, especially the advent of fluorescent nanoprobes has taken the process to a new level. Here, a systematic introduction to recent trends and advances focusing on various nanomaterials-related DNA fluorescent probes and the physicochemical properties of various involved nanomaterials (such as AuNP, GO, MnO, SiO, AuNR, etc.) are also presented in detail. Further, the strengths and weaknesses of existing probes were described and their progress in the detection of tumor-related mRNAs was illustrated. Also, the salient challenges were discussed later, with a few potential solutions.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/c9f34e2fd348/fbioe-10-1059845-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/b0668f7bebdb/fbioe-10-1059845-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/32cb90ea76f2/fbioe-10-1059845-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/307ee026da2d/fbioe-10-1059845-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/3b1add5c3979/fbioe-10-1059845-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/34ca50c72b9f/fbioe-10-1059845-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/748a6370e9fd/fbioe-10-1059845-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/6557081586f2/fbioe-10-1059845-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/b34f5537f076/fbioe-10-1059845-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/98b32d20f2b1/fbioe-10-1059845-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/15ef688e93b1/fbioe-10-1059845-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/c9f34e2fd348/fbioe-10-1059845-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/b0668f7bebdb/fbioe-10-1059845-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/32cb90ea76f2/fbioe-10-1059845-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/307ee026da2d/fbioe-10-1059845-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/3b1add5c3979/fbioe-10-1059845-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/34ca50c72b9f/fbioe-10-1059845-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/748a6370e9fd/fbioe-10-1059845-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/6557081586f2/fbioe-10-1059845-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/b34f5537f076/fbioe-10-1059845-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/98b32d20f2b1/fbioe-10-1059845-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/15ef688e93b1/fbioe-10-1059845-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/9751046/c9f34e2fd348/fbioe-10-1059845-g011.jpg

相似文献

[1]
DNA-enabled fluorescent-based nanosensors monitoring tumor-related RNA toward advanced cancer diagnosis: A review.

Front Bioeng Biotechnol. 2022-12-1

[2]
Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

Acc Chem Res. 2014-1-7

[3]
Scaffolding along nucleic acid duplexes using 2'-amino-locked nucleic acids.

Acc Chem Res. 2014-4-21

[4]
DNA-Based Nanostructures for Live-Cell Analysis.

J Am Chem Soc. 2020-7-1

[5]
Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review.

Int J Biol Macromol. 2022-5-1

[6]
Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification

2015

[7]
Recent advances in living cell nucleic acid probes based on nanomaterials for early cancer diagnosis.

Asian J Pharm Sci. 2024-6

[8]
Optical Probes for Neurobiological Sensing and Imaging.

Acc Chem Res. 2018-4-13

[9]
Nanomaterials for Fluorescent Detection of Hemoglobin.

Crit Rev Anal Chem. 2025

[10]
Modular Design of Peptide- or DNA-Modified AIEgen Probes for Biosensing Applications.

Acc Chem Res. 2019-10-28

引用本文的文献

[1]
Advances in Natural-Product-Based Fluorescent Agents and Synthetic Analogues for Analytical and Biomedical Applications.

Bioengineering (Basel). 2024-12-19

[2]
Recent advances in living cell nucleic acid probes based on nanomaterials for early cancer diagnosis.

Asian J Pharm Sci. 2024-6

本文引用的文献

[1]
Dynamic tracking of p21 mRNA in living cells by sticky-flares for the visual evaluation of the tumor treatment effect.

Nanoscale. 2022-2-3

[2]
Ratiometric Fluorescence Imaging of Intracellular MicroRNA with NIR-Assisted Signal Amplification by a Ru-SiO@Polydopamine Nanoplatform.

ACS Appl Mater Interfaces. 2021-9-29

[3]
GO-based antibacterial composites: Application and design strategies.

Adv Drug Deliv Rev. 2021-11

[4]
Cancer mortality 1981-2016 and contribution of specific cancers to current socioeconomic inequalities in all cancer mortality: A population-based study.

Cancer Epidemiol. 2021-10

[5]
A DNA-functionalized biomass nanoprobe for the targeted photodynamic therapy of tumor and ratiometric fluorescence imaging-based visual cancer cell identification/antitumor drug screening.

Analyst. 2021-2-7

[6]
Ultrasensitive Gastric Cancer Circulating Tumor Cellular RNA Detection Based on a Molecular Beacon.

Anal Chem. 2021-1-19

[7]
Endogenous mRNA Triggered DNA-Au Nanomachine for In Situ Imaging and Targeted Multimodal Synergistic Cancer Therapy.

Angew Chem Int Ed Engl. 2021-3-8

[8]
Spatiotemporally Controllable MicroRNA Imaging in Living Cells via a Near-Infrared Light-Activated Nanoprobe.

ACS Appl Mater Interfaces. 2020-8-12

[9]
DNA-Based Nanostructures for Live-Cell Analysis.

J Am Chem Soc. 2020-7-1

[10]
Gō model revisited.

Biophys Physicobiol. 2019-11-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索