Department of Physics, Stockholm University, S-10691, Stockholm, Sweden.
Laboratoire d'Information Quantique, CP 225, Université libre de Bruxelles (ULB), Av. F. D. Roosevelt 50, 1050, Bruxelles, Belgium.
Nat Commun. 2022 Dec 22;13(1):7878. doi: 10.1038/s41467-022-33922-5.
Dense coding is the seminal example of how entanglement can boost qubit communication, from sending one bit to sending two bits. This is made possible by projecting separate particles onto a maximally entangled basis. We investigate more general communication tasks, in both theory and experiment, and show that simpler measurements enable strong and sometimes even optimal entanglement-assisted qubit communication protocols. Using only partial Bell state analysers for two qubits, we demonstrate quantum correlations that cannot be simulated with two bits of classical communication. Then, we show that there exists an established and operationally meaningful task for which product measurements are sufficient for the strongest possible quantum predictions based on a maximally entangled two-qubit state. Our results reveal that there are scenarios in which the power of entanglement in enhancing quantum communication can be harvested in simple and scalable optical experiments.
密集编码是纠缠如何提高量子位通信的开创性例子,从发送一个比特到发送两个比特。这是通过将单独的粒子投影到最大纠缠基上来实现的。我们在理论和实验中研究了更一般的通信任务,并表明更简单的测量可以实现强大的,甚至有时是最优的纠缠辅助量子位通信协议。仅使用两个量子位的部分贝尔态分析仪,我们就证明了无法使用两个经典通信位来模拟的量子相关性。然后,我们表明,存在一种既定的、具有操作意义的任务,对于基于最大纠缠两量子位态的最强可能量子预测,乘积测量是足够的。我们的结果表明,在简单且可扩展的光学实验中,存在可以利用纠缠增强量子通信的场景。