Center for Industrial Mathematics (ZeTeM), University of Bremen, Bremen, Germany.
Bruker Daltonics GmbH, Bremen, Germany.
Proteomics Clin Appl. 2022 Jul;16(4):e2100068. doi: 10.1002/prca.202100068. Epub 2022 Mar 10.
Subtyping of the most common non-small cell lung cancer (NSCLC) tumor types adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) is still a challenge in the clinical routine and a correct diagnosis is crucial for an adequate therapy selection. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has shown potential for NSCLC subtyping but is subject to strong technical variability and has only been applied to tissue samples assembled in tissue microarrays (TMAs). To our knowledge, a successful transfer of a classifier from TMAs to whole sections, which are generated in the standard clinical routine, has not been presented in the literature as of yet. We introduce a classification algorithm using extensive preprocessing and a classifier (either a neural network or a linear discriminant analysis (LDA)) to robustly classify whole sections of ADC and SqCC lung tissue. The classifiers were trained on TMAs and validated and tested on whole sections. Vital for a successful application on whole sections is the extensive preprocessing and the use of whole sections for hyperparameter selection. The classification system with the neural network/LDA results in 99.0%/98.3% test accuracy on spectra level and 100.0%/100.0% test accuracy on whole section level, respectively, and, therefore, provides a powerful tool to support the pathologist's decision making process. The presented method is a step further towards a clinical application of MALDI MSI and artificial intelligence for subtyping of NSCLC tissue sections.
最常见的非小细胞肺癌(NSCLC)肿瘤类型腺癌(ADC)和鳞状细胞癌(SqCC)的亚型分类在临床常规中仍然是一个挑战,正确的诊断对于适当的治疗选择至关重要。基质辅助激光解吸/电离(MALDI)质谱成像(MSI)已显示出用于 NSCLC 亚型分类的潜力,但受到强烈的技术可变性的限制,并且仅应用于组织微阵列(TMA)中组装的组织样本。据我们所知,到目前为止,还没有文献报道成功地将分类器从 TMA 转移到标准临床常规中生成的整个切片。我们引入了一种分类算法,该算法使用广泛的预处理和分类器(神经网络或线性判别分析(LDA))来稳健地分类 ADC 和 SqCC 肺组织的整个切片。分类器在 TMA 上进行训练,并在整个切片上进行验证和测试。成功应用于整个切片的关键是广泛的预处理和使用整个切片进行超参数选择。神经网络/LDA 的分类系统在光谱水平上的测试准确率分别为 99.0%/98.3%,在整个切片水平上的测试准确率为 100.0%/100.0%,因此为支持病理学家的决策过程提供了强大的工具。所提出的方法是朝着 MALDI MSI 和人工智能在 NSCLC 组织切片亚型分类中的临床应用迈出的一步。