Suppr超能文献

基于机器学习的巴氏涂片图像分类:文献矩阵

Pap Smear Images Classification Using Machine Learning: A Literature Matrix.

作者信息

Alias Nur Ain, Mustafa Wan Azani, Jamlos Mohd Aminudin, Alquran Hiam, Hanafi Hafizul Fahri, Ismail Shahrina, Rahman Khairul Shakir Ab

机构信息

Faculty of Electrical Engineering & Technology, Universiti Malaysia Perlis, UniCITI Alam Campus, Sungai Chuchuh, Padang Besar 02100, Perlis, Malaysia.

Advanced Computing (AdvCOMP), Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, Arau 02600, Perlis, Malaysia.

出版信息

Diagnostics (Basel). 2022 Nov 22;12(12):2900. doi: 10.3390/diagnostics12122900.

Abstract

Cervical cancer is regularly diagnosed in women all over the world. This cancer is the seventh most frequent cancer globally and the fourth most prevalent cancer among women. Automated and higher accuracy of cervical cancer classification methods are needed for the early diagnosis of cancer. In addition, this study has proved that routine Pap smears could enhance clinical outcomes by facilitating the early diagnosis of cervical cancer. Liquid-based cytology (LBC)/Pap smears for advanced cervical screening is a highly effective precancerous cell detection technology based on cell image analysis, where cells are classed as normal or abnormal. Computer-aided systems in medical imaging have benefited greatly from extraordinary developments in artificial intelligence (AI) technology. However, resource and computational cost constraints prevent the widespread use of AI-based automation-assisted cervical cancer screening systems. Hence, this paper reviewed the related studies that have been done by previous researchers related to the automation of cervical cancer classification based on machine learning. The objective of this study is to systematically review and analyses the current research on the classification of the cervical using machine learning. The literature that has been reviewed is indexed by Scopus and Web of Science. As a result, for the published paper access until October 2022, this study assessed past approaches for cervical cell classification based on machine learning applications.

摘要

宫颈癌在世界各地的女性中经常被诊断出来。这种癌症是全球第七大常见癌症,也是女性中第四大流行癌症。宫颈癌分类方法需要自动化且具有更高的准确性,以便进行癌症的早期诊断。此外,本研究证明,常规巴氏涂片检查可通过促进宫颈癌的早期诊断来改善临床结果。用于高级宫颈筛查的液基细胞学(LBC)/巴氏涂片检查是一种基于细胞图像分析的高效癌前细胞检测技术,细胞被分类为正常或异常。医学成像中的计算机辅助系统从人工智能(AI)技术的非凡发展中受益匪浅。然而,资源和计算成本的限制阻碍了基于人工智能的自动化辅助宫颈癌筛查系统的广泛使用。因此,本文回顾了先前研究人员所做的与基于机器学习的宫颈癌分类自动化相关的研究。本研究的目的是系统地回顾和分析当前关于使用机器学习进行宫颈分类的研究。所回顾的文献由Scopus和科学网索引。结果,对于截至2022年10月发表的论文,本研究评估了过去基于机器学习应用的宫颈细胞分类方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a7e/9776577/8e4f87a91da5/diagnostics-12-02900-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验