Suppr超能文献

一种用于医学图像的具有特征约简的快速混合分类算法。

A Fast Hybrid Classification Algorithm with Feature Reduction for Medical Images.

作者信息

Mahmoud Hanan Ahmed Hosni, AlArfaj Abeer Abdulaziz, Hafez Alaaeldin M

机构信息

Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia.

出版信息

Appl Bionics Biomech. 2022 Mar 22;2022:1367366. doi: 10.1155/2022/1367366. eCollection 2022.

Abstract

In this paper, we are introducing a fast hybrid fuzzy classification algorithm with feature reduction for medical images. We incorporated the quantum-based grasshopper computing algorithm (QGH) with feature extraction using fuzzy clustering technique (-means). QGH integrates quantum computing into machine learning and intelligence applications. The objective of our technique is to the integrate QGH method, specifically into cervical cancer detection that is based on image processing. Many features such as color, geometry, and texture found in the cells imaged in Pap smear lab test are very crucial in cancer diagnosis. Our proposed technique is based on the extraction of the best features using a more than 2600 public Pap smear images and further applies feature reduction technique to reduce the feature space. Performance evaluation of our approach evaluates the influence of the extracted feature on the classification precision by performing two experimental setups. First setup is using all the extracted features which leads to classification without feature bias. The second setup is a fusion technique which utilized QGH with the fuzzy C-means algorithm to choose the best features. In the setups, we allocate the assessment to accuracy based on the selection of best features and of different categories of the cancer. In the last setup, we utilized a fusion technique engaged with statistical techniques to launch a qualitative agreement with the feature selection in several experimental setups.

摘要

在本文中,我们介绍一种用于医学图像的具有特征约简的快速混合模糊分类算法。我们将基于量子的蚱蜢计算算法(QGH)与使用模糊聚类技术(-均值)的特征提取相结合。QGH将量子计算集成到机器学习和智能应用中。我们技术的目标是将QGH方法具体集成到基于图像处理的宫颈癌检测中。在巴氏涂片实验室检测成像的细胞中发现的许多特征,如颜色、几何形状和纹理,在癌症诊断中非常关键。我们提出的技术基于使用2600多张公开的巴氏涂片图像提取最佳特征,并进一步应用特征约简技术来减少特征空间。我们方法的性能评估通过执行两种实验设置来评估提取的特征对分类精度的影响。第一种设置是使用所有提取的特征,这导致无特征偏差的分类。第二种设置是一种融合技术,它将QGH与模糊C均值算法结合使用以选择最佳特征。在这些设置中,我们根据最佳特征的选择以及癌症的不同类别将评估分配给准确率。在最后一种设置中,我们利用一种与统计技术相结合的融合技术,在多个实验设置中对特征选择达成定性一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139f/8964210/314e6d5d183f/ABB2022-1367366.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验