Suppr超能文献

随机森林和 Cox 模型预测癌症患者生存的最优 microRNA 测序深度。

Optimal microRNA Sequencing Depth to Predict Cancer Patient Survival with Random Forest and Cox Models.

机构信息

Univ. Grenoble Alpes, CEA, Inserm, IRIG, BioSanté U1292, BCI, 38000 Grenoble, France.

Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, Institute of Engineering University Grenoble Alpes, 38000 Grenoble, France.

出版信息

Genes (Basel). 2022 Dec 2;13(12):2275. doi: 10.3390/genes13122275.

Abstract

(1) Background: tumor profiling enables patient survival prediction. The two essential parameters to be calibrated when designing a study based on tumor profiles from a cohort are the sequencing depth of RNA-seq technology and the number of patients. This calibration is carried out under cost constraints, and a compromise has to be found. In the context of survival data, the goal of this work is to benchmark the impact of the number of patients and of the sequencing depth of miRNA-seq and mRNA-seq on the predictive capabilities for both the Cox model with elastic net penalty and random survival forest. (2) Results: we first show that the Cox model and random survival forest provide comparable prediction capabilities, with significant differences for some cancers. Second, we demonstrate that miRNA and/or mRNA data improve prediction over clinical data alone. mRNA-seq data leads to slightly better prediction than miRNA-seq, with the notable exception of lung adenocarcinoma for which the tumor miRNA profile shows higher predictive power. Third, we demonstrate that the sequencing depth of RNA-seq data can be reduced for most of the investigated cancers without degrading the prediction abilities, allowing the creation of independent validation sets at a lower cost. Finally, we show that the number of patients in the training dataset can be reduced for the Cox model and random survival forest, allowing the use of different models on different patient subgroups.

摘要

(1) 背景:肿瘤分析可用于预测患者的生存率。基于队列肿瘤分析设计研究时,两个需要校准的基本参数是 RNA-seq 技术的测序深度和患者数量。这种校准是在成本限制下进行的,因此必须找到一个折衷方案。在生存数据的背景下,这项工作的目标是比较 Cox 模型和弹性网络惩罚随机生存森林中患者数量和 miRNA-seq 和 mRNA-seq 测序深度对预测能力的影响。(2) 结果:我们首先表明,Cox 模型和随机生存森林具有相当的预测能力,对于某些癌症有显著差异。其次,我们证明了 miRNA 和/或 mRNA 数据可以提高预测能力,优于单独的临床数据。mRNA-seq 数据的预测能力略优于 miRNA-seq,但肺腺癌是一个显著的例外,肿瘤 miRNA 谱显示出更高的预测能力。第三,我们证明,对于大多数研究的癌症,RNA-seq 数据的测序深度可以降低,而不会降低预测能力,从而可以以更低的成本创建独立的验证集。最后,我们表明,Cox 模型和随机生存森林的训练数据集的患者数量可以减少,从而可以在不同的患者亚组上使用不同的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3cb/9777708/6380e91b52f4/genes-13-02275-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验