基于模糊不确定性降低的可信乳腺超声图像语义分割

Trustworthy Breast Ultrasound Image Semantic Segmentation Based on Fuzzy Uncertainty Reduction.

作者信息

Huang Kuan, Zhang Yingtao, Cheng Heng-Da, Xing Ping

机构信息

Department of Computer Science and Technology, Kean University, Union, NJ 07083, USA.

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Healthcare (Basel). 2022 Dec 8;10(12):2480. doi: 10.3390/healthcare10122480.

Abstract

Medical image semantic segmentation is essential in computer-aided diagnosis systems. It can separate tissues and lesions in the image and provide valuable information to radiologists and doctors. The breast ultrasound (BUS) images have advantages: no radiation, low cost, portable, etc. However, there are two unfavorable characteristics: (1) the dataset size is often small due to the difficulty in obtaining the ground truths, and (2) BUS images are usually in poor quality. Trustworthy BUS image segmentation is urgent in breast cancer computer-aided diagnosis systems, especially for fully understanding the BUS images and segmenting the breast anatomy, which supports breast cancer risk assessment. The main challenge for this task is uncertainty in both pixels and channels of the BUS images. In this paper, we propose a Spatial and Channel-wise Fuzzy Uncertainty Reduction Network (SCFURNet) for BUS image semantic segmentation. The proposed architecture can reduce the uncertainty in the original segmentation frameworks. We apply the proposed method to four datasets: (1) a five-category BUS image dataset with 325 images, and (2) three BUS image datasets with only tumor category (1830 images in total). The proposed approach compares state-of-the-art methods such as U-Net with VGG-16, ResNet-50/ResNet-101, Deeplab, FCN-8s, PSPNet, U-Net with information extension, attention U-Net, and U-Net with the self-attention mechanism. It achieves 2.03%, 1.84%, and 2.88% improvements in the Jaccard index on three public BUS datasets, and 6.72% improvement in the tumor category and 4.32% improvement in the overall performance on the five-category dataset compared with that of the original U-shape network with ResNet-101 since it can handle the uncertainty effectively and efficiently.

摘要

医学图像语义分割在计算机辅助诊断系统中至关重要。它可以将图像中的组织和病变分离出来,并为放射科医生和医生提供有价值的信息。乳腺超声(BUS)图像具有无辐射、成本低、便携等优点。然而,它也有两个不利特征:(1)由于获取地面真值困难,数据集规模通常较小;(2)BUS图像质量通常较差。在乳腺癌计算机辅助诊断系统中,可靠的BUS图像分割迫在眉睫,特别是对于全面理解BUS图像和分割乳腺解剖结构而言,这有助于乳腺癌风险评估。这项任务的主要挑战在于BUS图像的像素和通道都存在不确定性。在本文中,我们提出了一种用于BUS图像语义分割的空间和通道模糊不确定性降低网络(SCFURNet)。所提出的架构可以降低原始分割框架中的不确定性。我们将所提出的方法应用于四个数据集:(1)一个包含325张图像的五类BUS图像数据集,以及(2)三个仅包含肿瘤类别的BUS图像数据集(总共1830张图像)。所提出的方法与诸如带有VGG - 16、ResNet - 50/ResNet - 101的U - Net、Deeplab、FCN - 8s、PSPNet、带有信息扩展的U - Net、注意力U - Net以及带有自注意力机制的U - Net等当前最先进的方法进行了比较。与带有ResNet - 101的原始U形网络相比,它在三个公共BUS数据集上的杰卡德指数提高了2.03%、1.84%和2.88%,在五类数据集上肿瘤类别提高了6.72%,整体性能提高了4.32%,因为它能够有效且高效地处理不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29bd/9778351/51b49d704c4a/healthcare-10-02480-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索