Shi Jiaqiao, Vakanski Aleksandar, Xian Min, Ding Jianrui, Ning Chunping
Department of Computer Science, University of Idaho, Idaho Falls, ID 83401, USA.
School of Computer Science and Technology, Harbin Institute of Technology, Weihai, China.
Proc IEEE Int Symp Biomed Imaging. 2022 Mar;2022. doi: 10.1109/isbi52829.2022.9761438. Epub 2022 Apr 26.
Deep learning-based computer-aided diagnosis has achieved unprecedented performance in breast cancer detection. However, most approaches are computationally intensive, which impedes their broader dissemination in real-world applications. In this work, we propose an efficient and light-weighted multitask learning architecture to classify and segment breast tumors simultaneously. We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions. Moreover, we propose a new numerically stable loss function that easily controls the balance between the sensitivity and specificity of cancer detection. The proposed approach is evaluated using a breast ultrasound dataset with 1511 images. The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively. We validate the model using a virtual mobile device, and the average inference time is 0.35 seconds per image.
基于深度学习的计算机辅助诊断在乳腺癌检测中取得了前所未有的性能。然而,大多数方法计算量很大,这阻碍了它们在实际应用中的更广泛传播。在这项工作中,我们提出了一种高效且轻量级的多任务学习架构,用于同时对乳腺肿瘤进行分类和分割。我们将分割任务纳入肿瘤分类网络,这使得骨干网络学习专注于肿瘤区域的表示。此外,我们提出了一种新的数值稳定损失函数,可轻松控制癌症检测的敏感性和特异性之间的平衡。使用包含1511张图像的乳腺超声数据集对所提出的方法进行评估。肿瘤分类的准确率、敏感性和特异性分别为88.6%、94.1%和85.3%。我们使用虚拟移动设备对模型进行验证,每张图像的平均推理时间为0.35秒。