Li Qiang, Calhoun Vince D
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, Georgia.
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, Georgia.
Biophys Rep (N Y). 2025 Jun 16;5(3):100220. doi: 10.1016/j.bpr.2025.100220.
The human brain exhibits intricate spatiotemporal dynamics, which can be described and understood through the framework of complex dynamic systems theory. In this study, we leverage functional magnetic resonance imaging (fMRI) data to investigate reaction-diffusion processes in the brain. A reaction-diffusion process refers to the interaction between two or more substances that spread through space and react with each other over time, often resulting in the formation of patterns or waves of activity. Building on this empirical foundation, we apply a reaction-diffusion framework inspired by theoretical physics to simulate the emergence of brain spacetime vortices within the brain. By exploring this framework, we investigate how reaction-diffusion processes can serve as a compelling model to govern the formation and propagation of brain spacetime vortices, which are dynamic, swirling patterns of brain activity that emerge and evolve across both time and space within the brain. Our approach integrates computational modeling with fMRI data to investigate the spatiotemporal properties of these vortices, offering new insights into the fundamental principles of brain organization. This work highlights the potential of reaction-diffusion models as an alternative framework for understanding brain spacetime dynamics.
人类大脑呈现出复杂的时空动态,这可以通过复杂动态系统理论框架来描述和理解。在本研究中,我们利用功能磁共振成像(fMRI)数据来研究大脑中的反应扩散过程。反应扩散过程是指两种或更多物质在空间中扩散并随时间相互反应的相互作用,通常会导致活动模式或波的形成。基于这一实证基础,我们应用受理论物理学启发的反应扩散框架来模拟大脑中脑时空漩涡的出现。通过探索这个框架,我们研究反应扩散过程如何作为一个有说服力的模型来控制脑时空漩涡的形成和传播,这些漩涡是大脑活动的动态、旋转模式,在大脑内的时间和空间中出现并演化。我们的方法将计算建模与fMRI数据相结合,以研究这些漩涡的时空特性,为大脑组织的基本原理提供了新的见解。这项工作突出了反应扩散模型作为理解脑时空动态的替代框架的潜力。