Suppr超能文献

MAG-D:一种基于多元注意力网络的云工作负载预测方法。

MAG-D: A multivariate attention network based approach for cloud workload forecasting.

作者信息

Patel Yashwant Singh, Bedi Jatin

机构信息

Department of Computer Science Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.

出版信息

Future Gener Comput Syst. 2023 May;142:376-392. doi: 10.1016/j.future.2023.01.002. Epub 2023 Jan 10.

Abstract

The Coronavirus pandemic and the work-from-home have drastically changed the working style and forced us to rapidly shift towards cloud-based platforms & services for seamless functioning. The pandemic has accelerated a permanent shift in cloud migration. It is estimated that over 95% of digital workloads will reside in cloud-native platforms. Real-time workload forecasting and efficient resource management are two critical challenges for cloud service providers. As cloud workloads are highly volatile and chaotic due to their time-varying nature; thus classical machine learning-based prediction models failed to acquire accurate forecasting. Recent advances in deep learning have gained massive popularity in forecasting highly nonlinear cloud workloads; however, they failed to achieve excellent forecasting outcomes. Consequently, demands for designing more accurate forecasting algorithms exist. Therefore, in this work, we propose 'MAG-D', a ultivariate ttention and ated recurrent unit based eep learning approach for Cloud workload forecasting in data centers. We performed an extensive set of experiments on the Google cluster traces, and we confirm that MAG-DL exploits the long-range nonlinear dependencies of cloud workload and improves the prediction accuracy on average compared to the recent techniques applying hybrid methods using Long Short Term Memory Network (LSTM), Convolutional Neural Network (CNN), Gated Recurrent Units (GRU), and Bidirectional Long Short Term Memory Network (BiLSTM).

摘要

冠状病毒大流行和居家办公极大地改变了工作方式,迫使我们迅速转向基于云的平台和服务以实现无缝运作。大流行加速了云迁移的永久性转变。据估计,超过95%的数字工作负载将驻留在云原生平台。实时工作负载预测和高效资源管理是云服务提供商面临的两个关键挑战。由于云工作负载具有时变特性,其高度不稳定且混乱,因此基于经典机器学习的预测模型无法获得准确的预测结果。深度学习的最新进展在预测高度非线性的云工作负载方面大受欢迎,然而,它们未能取得出色的预测结果。因此,存在设计更准确预测算法的需求。因此,在这项工作中,我们提出了“MAG-D”,一种基于多变量注意力和门控循环单元的深度学习方法,用于数据中心的云工作负载预测。我们在谷歌集群跟踪数据上进行了大量实验,并且我们证实,与最近使用长短期记忆网络(LSTM)、卷积神经网络(CNN)、门控循环单元(GRU)和双向长短期记忆网络(BiLSTM)应用混合方法的技术相比,MAG-DL利用了云工作负载的长期非线性依赖性并平均提高了预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9266/9855517/13ab61538565/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验